
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD872259

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; JUN 1970. Other
requests shall be referred to Air Force
Materials Lab., Wright-Patterson AFB, OH 45433.

USAFSC ltr 26 May 1972

COMPUTER-AIDED DESIGNjor
NUMERICALLY CONTROLLED PRODUCTION

-.

AFML-TR-70-78 PROPERTY OF UTe LIBRARY
RETURN TO UTe LIBRARY. DO NOT DESTROY OR

TRANSMIT TO ANOTHER PERSON OR OFFICE.

}. E. Ward

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TECHNICAL REPORT AFML-TR-70-78

June 1970

This document is subject to special export control and each
transmittal to foreign governments or foreign nationals may be
made only with prior approval of the Air Force Materials Labora­
tory, Wright-Patterson Air Force Base, Ohio 45433

FABRICATION BRANCH
MANUFACTURING nCHNOLOGY DIVISION

AIR FORCE MATERIALS LABORATORY

Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

lINiTill TEGHNulCGY Gmn
Special Distribution

by the M.1. T. Industrial Liaison Office,
Category No. 9c

SEP 24 1970

UBRARY SERVICES

~FP 29 1970

Private STINET
 Home | Collections
 View Saved Searches | View Shopping Cart | View Orders

Other items on page 1 of your search results: 1

View XML

Citation Format: Full Citation (1F)

Accession Number:
AD0872259

Citation Status:
Active

Citation Classification:
Unclassified

Fields and Groups:
120500 - Computer Programming and Software
120600 - Computer Hardware
130800 - Mfg & Industrial Eng & Control of Product Sys

Corporate Author:
MASSACHUSETTS INST OF TECH CAMBRIDGE ELECTRONIC SYSTEMS LAB

Unclassified Title:
(U) Computer-Aided Design for Numerically Controlled Production.

Title Classification:
Unclassified

Descriptive Note:
Final technical rept. 1 May 67-30 Jan 70,

Personal Author(s):
Ward, John E

Report Date:
Jun 1970

Media Count:
134 Page(s)

Cost:
$14.60

Contract Number:
F33615-67-C-1530
F33615-69-C-1341

Report Number(s):
ESL-FR-420
AFML-TR-70-78

Project Number:
AF-863-7

Monitor Acronym:
AFML

Monitor Series:
TR-70-78

Report Classification:
Unclassified

Descriptors:
(U) (*PRODUCTION CONTROL, AUTOMATION), (*COMPUTER PROGRAMMING, PROBLEM

Verity K2 Document Display https://dtic-stinet.dtic.mil./stinet/jsp/docread.jsp?K2DocKey=docId_AD...

1 of 2 12/10/2009 8:02 AM

Distribution Change Order refer to Change Authority Field

SOLVING), GRAPHICS, PROGRAMMING LANGUAGES, DISPLAY SYSTEMS, COMPILERS
Identifiers:

(U) AED-0 PROGRAMMING LANGUAGE, *COMPUTER AIDED DESIGN, COMPUTERS,
GRAPHICS, *NUMERICAL CONTROL.

Identifier Classification:
Unclassified

Abstract:
(U) The report summarizes the activities of the M.I.T. Computer-Aided Design (CAD) Project in the
final implementation phase of a generalized 'system of software systems' for generating specialized
problem-oriented man-machine problem-solving systems. Known as the AED approach (for Automated
Engineering Design) the Project results are applicable not only to mechanical design, but to arbitrary
scientific, engineering, management, and production system problems as well. Program
accomplishments are supported by hardware and software innovations in computer graphics. All results
have been programmed using machine-independent techniques in the Project's AED-0 Language, based
on Algol-60. (Author)

Abstract Classification:
Unclassified

Distribution Limitation(s):
01 - APPROVED FOR PUBLIC RELEASE

Source Serial:
F

Source Code:
127200

Document Location:
DTIC AND NTIS

Change Authority:
ST-A USAFSC, LTR, 26 MAY 72

Privacy & Security Notice | Web Accessibility

private-stinet@dtic.mil

Verity K2 Document Display https://dtic-stinet.dtic.mil./stinet/jsp/docread.jsp?K2DocKey=docId_AD...

2 of 2 12/10/2009 8:02 AM

Distribution Change Order refer to Change Authority Field

NOTICES

When Government drawings, specifications, or other data are used
for any purpose other than in connection with a definitely related Gov­
ernment procurement operation, the United States Government thereby
incurs no responsibility nor any obligation whatsoever; and the fact that
the Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data, is not to be regarded
by implication or otherwise as in any manner licensing the holder or
any other person or corporation, or conveying any rights or permission
to manufacture, use, or sell any patented invention that may in any way
be related thereto.

This document is subject to special export controls and each trans­
mittal to foreign governments or foreign nationals may be made only
with prior approval of the Air Force Materials Laboratory, Wright­
Patterson Air Force Base, Ohio.

The distribution of this report is limited because the report con­
tains technology identifiable with items on the strategic embargo lists.

Copies of this report should not be returned unless return is re­
quired by security considerations, contractual obligations, or notice
on a specific document.

...

.. "I,

Verity K2 Document Display
Distribution Change Order

Refer to Change Authority Field

Page 1 of2

Private STINET
Home I Collections

View Saved Searches I View Shopping Cart I View Orders

Other items on page 1 of your search results: 1 I2. I~ I~ I2 IQ

Citation Format: Full Citation (IF)

Accession Number:
AD0872259

Citation Status:
Active

Citation Classification:
Unclassified

Field(s) & Group(s):
120500 - COMPUTER PROGRAMMING AND SOFrWARE
120600 - COMPUTER HARDWARE
130800 - MFG & INDUSTRIAL ENG & CONTROL OF PRODUCT SYS

Corporate Author:
MASSACHUSETTS INST OF TECH CAMBRIDGE ELECTRONIC SYSTEMS LAB

Unclassified Title:
(D) Computer-Aided Design for Numerically Controlled Production.

Title Classification:
Unclassified

Descriptive Note:
Final technical rept. 1 May 67-30 Jan 70,

Personal Author(s):
Ward, John E.

Report Date:
Jun 1970

Media Count:
134 Page(s)

Cost:
$14.60

Contract Number:
F33615-67-C-1530

Contract Number:
F33615-69-C-1341

Report Number(s):
ESL-FR-420
AFML-TR-70-78

Project Number:
. AF-863-7

Project Number:
AF-86309

Monitor Acronym:
AFML

Monitor Series:
TR-70-78

Report Classification:
Unclassified

Descriptors:
(U) ("'PRODUCTION CONTROL, ("'COMPUTER PROGRAMMING, AUTOMATION), PROBLEM
SOLVING), GRAPHICS, PROGRAMMING LANGUAGES, DISPLAY SYSTEMS, COMPILERS

Identifiers:
(U) AED-O PROGRAMMING LANGUAGE, "'COMPUTER AIDED DESIGN, COMPUTERS,
GRAPHICS, "'NUMERICAL CONTROL,

https:/1dtic-stinet.dtic.mil/stinet/jsp/docread.jSp 1/5/2006

....
Verity K2 Document Display

Distribution Change Order
Refer to Change Authority Field

Page 2 of2

Identifier Classification:
Unclassified

Abstract:
(U) The report summarizes the activities of the M.LT. Computer-Aided Design (CAD) Project in the
final implementation phase of a generalized 'system of software systems' for generating specialized
problem-oriented man-machine problem-solving systems. Known as the AED approach (for
Automated Engineering Design) the Project results are applicable not only to mechanical design, but to
arbitrary scientific, engineering, management, and production system problems as well. Program
accomplishments are supported by hardware and software innovations in computer graphics. All results
have been programmed using machine-independent techniques in the Project's AED-O Language, based
on Algol-60. (Author)

Abstract Classification:
Unclassified

Distribution Limitation(s):
01 - APPROVED FOR PUBLIC RELEASE

Source Serial:
F

Source Code:
127200

Document Location:
DTIC

Change Authority:
ST-A USAFSC, LTR, 26 MAY 72

• Privacy & Security Notice I Web Accessibility

private-stinet@dtic.mil

https:/1dtic-stinet.dtic.rnillstinet/jspldocread.j sp 1/5/2006

•

------5
F-;

~
o
r­
m-
o
N

COMPUTER -AIDED DESIGN FOR
NUMERICALLY CONTROLLED PRODUCTION

Final Technical Report

1 May 1967 - 3 0 January 1970

John E. Ward

PROPERTY OF UTe LIBRARY \
RmJRN TO UTe LIBRARY. DO NOT DESTROY OR

TRANSMIT TO ANOTHER PERSON OR OFFICE.

Electronic Systems Laboratory
Electrical Engineering Department

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts 02139

Contracts

F336l5-67-C-1530
F336l5-69-C-134l

This document is subject to special export control and each trans­
mittal to foreign governments or foreign nationals may be made
only with prior approval of the Air Force Materials Laboratory,
Wright-Patterson Air Force Base, Ohio 45433.

,

FOREWORD

This Final Technical Report submitted in March 1970, summarizes the
work performed from 1 May 1967 through 30 January 1970 under two
successive United States Air Force Contracts: F33615 -67 -C -1530
from 1 May 1967 to 30 November 1968; and F33615-69-C-1341 from
1 December 1968 to 30 January 1970. Details of the work have pre­
viously been recorded in a series of Technical Reports on specific
subjects. Prior work from 1 December 1959 through 3 May 1967
was recorded in Final Technical Report AFML-TR -68-206, May 1968.

The M.L T. number assigned to this report is ESL-FR-420.

Contracts F33615-67-C-1530 and F336l5-69-C-1341 with the Electronic
Systems Laboratory of Massachusetts Institute of Technology, Cambridge,
Mas s achus etts , were initiated under Manufacturing Methods Projects
863 - 7 and 86309, "Integration of Des ign Data into Numerical Control. I'
They were accomplished under the technical direction of Mr. W. M.
Webster, Mr. M. A. Guenther, and Lt. R. Coe, Frabrication Branch,
MATF, Manufacturing Technology Division, Air Force Materials Lab­
oratory, Wright-Patterson Air Force Base, Ohio.

The program covered in this report was the result of the efforts of
many people over an extended period - May 1, 1967 to January 30,
1970. Listed below are the 50 technical personnel (faculty, staff
members, visiting staff, graduate and undergraduate students)who
participated directly in the work during this period, organized accord­
ing to the subgroupings within the Computer -A ided Des ign Project.

Mr. Douglas T. Ros s has served as Project Engineer for the Computer­
Aided Design Project for this entire period. The support and couns el of
Profes sor J. Francis R eintjes, Director of the Electronic Systems Lab­
oratory, is gratefully acknowledged.

From the Computer Applications Group, Electronic Systems Laboratory

Douglas T. Ross, Group Leader and Project Engineer
Clarence G. Feldmann, Associate Leader
Dr. Jorge E. Rodriquez, Assistant Leader

,

Eric C. Anderson
Henry G. Baker, Jr.
Reuben J. Bigelow
Richard H. Bryan
Frederick Cioramaglia
Dr. Ronald W. Cornew
Robert S. Eanes
N. Dudley Fulton
Irene G. Greif
WHliam M. Inglis
Peter J ohans en

Panos Z. Marmarelis
Robert C. Nelson
Robert B. Polansky
John R. Ross
Daniel E. Thornhill
John F. Walsh
John E. Ward
Thomas S. We s ton
Barry L. Wolman
Robert V. Zara

Visting Staff of the AED Cooperative Program

Frank Bates
Donald J. Cameron
John T. Doherty
Richard B. Gluckstern
G. Lawrence Lane
Robert J. McDowell
Richard A. Meyer
Arthur T. Nagai
Irwin Wenger
Stephan Zurnaciyan

- Union Carbide Company
- Ferranti Limited
- Raytheon Manufacturing Company
- Univac Div. Sperry Rand Corporation
- Sandia Corporation
- Honeywell EDP Division
- IBM Corporation
- The Boeing Company
- Raytheon Manufacturing Company
- Northrop Corporation

From the Display Group, Electronic Systems Laboratory

John E. Ward, Group Leader and Deputy Director,
Electronic Systems Laboratory

R obert H. Stotz, As sistant Group Leader

Robert J. Ascott
Abhay K. Bhushan
Michael F. Brescia
David G. Chapman
Thomas B. Cheek
James G. Fiasconaro
Frank B. Hills
William Hutchis on

Robert G. Rausch
Christopher L. Reeve
Thomas L. Smith
W. David Stratton
Jonathan R. Sus sman
Daniel E. Thornhill
Dietrich Vedder
Albert Vezza

This project has been accomplished as a part of the Air Force Manu­
facturing Methods Program, the primary objective of which is to
develop, in a timely basis, manufacturing proces ses, techniques, and
equipment for us e in economical production of USAF materials and
components.

Your comments are solicited on the potential utilization of the informa­
tion contained herein as applied to your present and/or future produc­
tion programs. Suggestions concerning additional manufacturing methods
development required on this or other subjects will be appreciated.

This technical report has been reviewed and is approved.

\. .~ tLL Cc{ / L1- -['-_
\V JXCK R. MARSH
\j Chief, Fabrication Branch

\J Manufacturing Technology Divisin

•

ABSTRACT

This report sUm.rrlarizes the activities of the M.1. T. Computer-Aided
Design (CAD) Project from 1 May 1967 through 30 January 1970 in the
final implementation phase of a generalized "system of software sys­
tems 11 for generating specialized problem-oriented man-machine
problem-solving systems using high-level language techniques and
advanced computer graphics. Known as the AED Approach (for Auto­
mated Engineering Design) the Project results are applicable not only
to mechanical design, as an extension of earlier development of the
APT System for numerical control, but to arbitrary scientific, eng­
ineering, management, and production system problems as well. As
desc ribed in prior report AFML-TR -68 -206, May, 1968, advanced
techniques for verbal and graphical language and generalized problem­
modeling are based on the concept of a "p l ex " which combines data,
structure, and algorithmic aspects to provide complete and elegant
representation of arbitrary problems. Program accomplishments are
supported by hardware and software innovations in computer graphics.
All results have been programmed using machine-independent tech­
niques in the Project's AED-O Language, based on Algol-60.

During this concluding 32-month phase of the 10-year CAD program
at M. 1. T. , the major emphasis has been on bootstrapping the AED
systems to third-generation computers. A series of field-trial sys­
tems was made available to industry, culminating in July 1969 in
formal release of Version 3 of AED for IBM 360-series computers
in both batch and time sharing, and partial completion of a compatible
version for the Univac 1108 computer. Report topics include: The
bootstrapping process; user documentation for the AED system; sev­
eral application studies to demonstrate use of AED techniques in lan­
guage design, system building, and computer graphics; and Project
interaction with industry.

This abstract is subject to special export control and each transmittal
to foreign governments or foreign nationals may be made only with
prior approval of the Air Force Materials Laboratory, Wright-
Patte rs on Air F orc e Bas e, Ohio 45433 •

iii

ACKNOWLEDGEMENT

The source material for the preparation of this comprehensive
final report on project activities was drawn from various existing
project publications and progress reports plus previously unpublished
memoranda and some new material. The author would like to acknowl­
edge the contributions of D. T. Ross in Chapter I, of C. G. Feldmann
in Chapters II and III, and of R. B. Polansky and R. W. Cornew in
Chapter V.

Work reported herein was supported in part by Project MAC, an
M.1. T. research project sponsored by the Advanced Research Projects
Agency, Department of Defense, under Office of Naval Research Con­
tract Nonr-4102(Ol). Reproduction of this report, in whole or in part
is permitted for any purpos e of the United States Government.

iv

,

,

,

CHAPTER I

A.

B.

C.

D.

CHAPTER II

A.

B.

C.

D.

E.

F.

G.

CONTENTS

INTRODUCTION

Review of Project Goals

The AED Bootstrapping Process

1. Graphical Notation

2. Representation of the Overall
Bootstrap Process

3. Relative Program Sizes

Cooperation with Other Groups

Project Termination

FIRST PHASES OF BOOTSTRAPPING AED
TO THE IBM 360 COMPUTER

The November, 1966,360 Bootstrap Schedule

Problems in Meeting Phases 3 and 4
of the November, 1966 Schedule

1. Personnel Problems

2. Computer System Problems

3. 360 Code Generation Problems

4. File Editing Problems

5. Compiler Problems

6. New AED -0 Language and Subsystems

Revision of 360 Bootstrap Schedule
in November, 1967

Completion and Evaluation of Initial Bootstrap
(January, 1968)

Version 1 Release of AED/360 (May, 1968)

1. Size Considerations (Version 1)

2. Execution Time (Version 1)

3. Evaluation (V ers ion 1)

Version 2 Release (September, 1968)

AED Questionnaires

1

2

5

7

9

9

13

15

16

16

17

17

18

19

19

20

21

21

22

23

24

25

26
28

31

CHAPTER III THE FINAL (VERSION 3) AED/360 RELEASE 35

A. New Features of AED Version 3 35

1. Additions to the Compiler 37

2. Additions to the Language 37

v

B.

C.

D.

CHAPTER IV

A.

B.

C.

D.

E.

F.

CHAPTER V

A.

B.

C.

D.

3. Implementation Changes ~

4. New System Features

Contents of AED Version 3 Release Tapes

1. Tape 1: Source Programs

2. Tape 2: OS/360 Partitioned Data Sets

3. Tape 3: CMS Modules and Libraries

4. Tape 4: CMS Text Files

Version 3 Bootstraps to Other Computers

1. Univac 1108

2. GE-645

AED Documentation

1. Documentation Problems

2. The Final Documentation Effort

APPLICATION, LANGUAGE, AND
COMPUTATION STUDIES

AED JR Revis ions

Subroutine Package Efforts

The SHOWIT System

Syntax Definition Facility (SDF)

Equilibrium Problem Solver (EPS)

Graph Model for Parallel Computations

DATA MODELING (CADET)

Introduction

Description of Polyface

Cornmon Sub-Expres s ioning

1. Call Mechanisms

2. Mous e Algorithm

3. Better Encodings

4. Programming Polyface Operations for
Common Sub-Expres sions

Summary

vi

38

41

42

42

45

46

48

49

50

50

51

51

52

66

66

67

68

70

72

74

76

76
77

80

80

82

83

84

85

,

...

CHAPTER VI

A.

B.

C.

COMPUTER GRAPHICS

ESL Display Console

ARDS Low-Cost Storage-Tube Display

Graphic Software

1. Integration of the PDP-7 Buffer Computer

2. GRAPHSYS

3. GRAPHSYS for ARDS

88

88

89

92

92

93

96

•

CHAPTER VII INDUSTRY PARTICIPATION 97

A. Introduction 97

B. The AED Cooperative Program 98

C. Recipients of Interim AED Systems
(1964-1968) 98

D. Recipients of Final Version 3 AED/360
(1969-1970) 101

CHAPTER VIII ABSTRACTS OF PROJECT PUBLICATIONS 104

A. Final Reports for Previous Contract Periods 104

B. Technical Reports for Pres ent
Reporting Period 105

APPENDIX A AED QUESTIONNAIRE (Reprint) 110

APPENDIX B AUTOMATIC GENERATION OF EFFICIENT
LEXICAL PROCESSORS USING FINITE
STATE TECHNIQUES (ACM Reprint) 113

vii

LIST OF FIGURES

1. The AED Approach to System Building

2. Graphical Conventions for Program Type

3. The AED Compilation Process

4. Hexagon Representation of Program Categories

5. Complete Representation for a Host Compiler

6. The AED Bootstrap Process

7. Example of Bootstrap Conversion Flow

8. Relative Sizes of 360 Hexagon Pieces (In 32-bit
Words) for May 1968 Bootstrap

9. Sizes of 360 Programs and Tables for May 1968
Bootstrap

~ 6

7

7

8 ,
8

10

11

12

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

Summary of 54 Que stionnaire Returns on Comparison
of AED with other Languages for Various Programming
Jobs

Composite Ratings for All Programming Areas
(54 Que stionnaire Returns)

Polyface Operations

A Polyface Model (Topological)

Nested Polyface Structure Showing the Construction
Sequence

The 6 Basic Ring Functions

ARDS Display Operation in Berlin, Germany, via
Transatlantic Telephone Link

Information Flow in Display System

AED Visiting Staff

viii

33

34

78

79

82

85

91

93

99

,

I.

II.

III.

IV.

V.

VI.

LIST OF TABLES

Comparison of Run Time and Cost for Version 1
AEDJR On the 7094 and the 360

Contents of Report ESL-R-405, "Introduction to
Software Engineering with the AED-O Language

Contents of Report ESL-R-406. "AED-O
Programme r 1 s Guide

Visiting Staff of the AED Cooperative Program
(March 1. 1964 to June 30. 1970)

Recipients of Interim AED System Releases
1964-1968

Recipients of Final Version 3 AED/360 (1969-1970)

IX

~ 27

53

59

100

102

103

,

•
...

CHAPTER I

INTRODUCTION

This report covers the activities of the MIT Computer - Aided

Des ign Project from 1 May 1967 through 30 January 1969, the conclud­

ing phas e of a fruitful 20-year investigation into automated manufac­

turing for the Air Force. In the period from 1949 - 1955, the first

numerically controlled machine tool was developed and demonstrated,

and in the period from 1955 - 1959, the APT (Automatically Programmed

Tool) system was developed in cooperation with the Aerospace Indus­

tries Association. Project attention since 1959 has been devoted to

the subject of computer -aided des ign, with two major lines of investiga­

tion: techniques for the "automation!! of software construction to pro­

vide the groundwork necessary for flexible and economical application

of computers in the design proces s; and techniques and equipment for

man-machine communication. Of course, there were many subsidiary

and supporting lines of inquiry over this 10-year span, but the bulk of

thes e have already been reported in a previous final report for the

period 1 December 1959 to 3 May 1967, ':' and many separate technical

reports on specific subjects.

During the period covered by this report, the emphasis was on

"reduction-to-practice", i. e., putting the programs and techniques

that had been established into a form suitable for distribution to the

aerospace industry. The major task was to convert the AED

(Automated Engineering Design) system of programs developed on

second-generation computer facilities at M. 1. T. to the third-generation

computers now widely used in industry. This has resulted in formal

releas e of AED systems for the IBM 360 and Univac 1108 computers.

The process by which this was done is part of the AED story; the

achievement of a remarkable degree of machine independence, which

~:;::

Report AFML-TR -68-206 (s ee report list for complete citation).

-1-

-2-

provides a protection against the perennial problem of software

obs oles cence as computer technology changes. This proces s, called

"bootstrapping", is reviewed briefly in Section B of this Introduction,

and details of the actual bootstrapping of AED to the IBM 360, result­

ing in the final released system, are presented in Chapters II and III.

Prior to this, however, it is us eful to review in Section A the historical

goals of the investigations which have led to AED. Much of Section A

has been adapted from a similar section of the previous Final Report

AFML-TR -68-206.

A. REVIEW OF PROJECT GOALS

Work on computer-aided design within the Computer Applica­

tions Group of the Electronic Systems Laboratory at M. 1. T. predates

the contractual periods covered by this report. The real beginning

was in June of 1956 when the group inherited the M. I. T. activity in

numerical control from the preceding project, which had been primar­

ily engineering oriented, and focused on automatic programming for

numerical control through the APT Project. In the very first interim

report of the APT Project, brief reference is made to the ultimate

extension of the preparation of numerical control information into the

design area. Throughout the APT System development, this ill­

formed concept always was in the background. As the work on the

development of the APT System was drawing to its logical conclusion

with the cooperative effort with companies in the Aerospace Industries

Association, the possibilities of extending the sophisticated use of

computers into the design preparation stages which precede part pro­

gramming came more sharply into focus. Since the early fifties we

had made extensive use of on-line displays and manual intervention

(the first graphical input through a display was done in 1954) and had

developed a backlog of sophisticated computer usage techniques in

various areas. Some of this experience had been used profitably in

the APT System development, but other portions needed a broader

context in order to be brought to fruition. Thes e experiences, coupled

with an informal acquaintanceship with the problems of aerospace

design and manufacturing gained from the intimate contact with

,

•

..

t

-3 -

aerospace companies during the APT effort, formed the background

for the initial proposal that useful results could be expected from a

program in computer-aided design.

Even our incomplete knowledge of the aerospace design-to­

manufacturing cycle was sufficient to demonstrate clearly that a

small academic project could not hope to create a system which

would solve everybody's problem directly. Furthermore, it was

felt that it would not be appropriate to concentrate on a limited and

specialized application which would be of direct utility to only one

or a few of the potential companies we hoped to benefit. Instead, we

felt that the most appropriate program would be one aimed at funda­

mentals, with close liaison with industry once preliminary us eable

results had been obtained. Industry, especially in aerospace matters,

had historically been project oriented, with insufficient time for a

truly long-range technological effort such as we felt was needed. On

the other hand, the ability of the aerospace industry to adapt rapidly

to sophisticated technological innovations is well known; the rapid

incorporation of numerical control being but one of many excellent

examples. We hoped, therefore, to be able to establish a system­

atized solution to s orne of the bas ic problems of generaliz ed

computer-aided design, and then to serve a catalytic role in stim­

ulating industry its elf in the application of the results to divers e

application areas.

Our deliberations on the role which we could play began even

before we had coined the term I'computer-aided design" in the late

1950's, and, in fact, a part of the early discussions centered around

the distinction between 'Iautomatic It and "computer -aided It design and

"computer aids to" design. It seemed quite clear to us that any work

in automatic design, in which a parameterized design is optimized in

some fashion by parameter variation, would of necessity be too clearly

related to a particular application area to permit a general approach.

Although various aspects of the APT System analyses and portions of

earlier work in which we had us ed various linearization and adaptive

programming techniques were related to automatic design, we felt

that such questions definitely should occupy a secondary role. Sim­

ilarly, we were not interested in advancing the us e of computers as

-4-

aids to existing design practice. Instead, we wanted to couple a man

and a machine into a problem-solving team suitable for fresh design

problems requiring creative solutions, and performing better than

either man or machine alone. Our ultimate goal was to have a system

capable of going from the conception of the need for a part through to

the finished product by means of numerical control.

We sought to establish a system whose language and character­

istics could be adapted to meet the needs of the user, whatever the

domain of application. Our view was that it was impos sible to put

bounds upon the problems with which the system would have to cope,

because design itself knows no bounds. Geometry, materials, aero­

dynamics, thermodynamics, and even aesthetics, all may play deter­

mining roles in a given design. If the system was truly to be

applicable to creative design, it would have to be adaptable to thes e

and many other areas. Thus in our view, there was no distinction

between computer-aided design and generalized man-machine

problem-solving.

These grandiose plans were not entirely wishful thinking, for

the previous activities of the Computer Applications Group had

touched upon many of the requisite areas and it seemed clear that

even modest success would have handsome payoff if properly applied.

Many of the basic ideas on which we hoped to base the new

program emerged and went tln-ough their earliest refinements in the

context of our final contributions to the APT System. Still others

were exercis ed as part of several small investigations w hi c h we

carried out at the close of the APT Project in preparation for the

new computer-aided design focus.

As our viewpoint has sharpened and as our techniques and

general approach have matured over the years, we have changed

terminology slightly, so that instead of speaking of adapting a

general system to a special purpose, we now prefer to think of em­

ploying a family of generalized systems to create a specialized new

member of the family. We call the family of systems by the general

name AED (an acronym for Automated Engineering Design) and tout

"the AED Approach" as the entire sweep of concepts, techniques, and

working tools for creating specialized computer -aided design systems.

,

\

-5 -

The termInology and techniques are refined, but the overall concept is

the same. The AED Approach to system building is illustrated in

Fig. I.

B. THE AED BOOTSTRAPPING PROCESS

The AED Compiler is composed almost entirely of programs

written in the AED -0 Language. The remaining portion is a minimum

number of additional, machine-language programs which handle a few

operations that are totally machine dependent and serve to interface

the AED Compiler with the machine environment. Given the AED

System operating on one computer, called the Host Computer, the

programs which constitute AED can be compiled into a new form

which will operate on another computer, called the Target Computer.

This technique called "bootstrapping II, is briefly summarized below to

give a background for the work described in Chapters II and III.

Most of the AED -0 Language source programs are completely

machine-independent, i. e., they deal with operations that must be

performed on any computer. Machine-dependent data structures

(called "state beads ") describing the Target machine are all defined

in a single program segment that is inserted in the machine-independent

programs by an . INSER T statement. A smaller number of the com­

piler's AED -0 Language source programs deal with machine -dependent

aspects of the compilation proces s. The number of thes e programs

depends upon the special machine characteristics and how "smart" the

cOITlpiler is in the us e of thes e characteristics.

In addition to the body of the compiler programs, there is a

series of packages of procedures which we call the "Support Package".

Each portion of the Support Package handles one aspect of the system­

building process (dynamic storage allocation, string manipulation,

etc.), and the compiler's source programs make frequent use of these

packages. In the same way as the compiler source programs, the

Support Package is divided into AED -0 Language source programs,

both machine independent and machine dependent, plus a few machine­

language programs.

-6-

HIGH-LEVEL DEFINITION LANGUAGES

~

DEFINITION SPELLING GRAMMER COMPREHENSION ACTION
OF ~ iWLES llUL£S RULES RULES

LANGUAGE" X" I I
, __ i __ -, , __ J __ -,
I I I I
I I I I
I I I I ,
I I I I
I I I I

SYSTEM I I I IOF ~AED I I I I
SYSTEMS I I I I

I I I I
I

I I II
I I I I
I I I I
I I I I
I I I I
L--

1
----1 L __ , __ --1

CONTROL CONTROL
I I

I
I
I
I

PROBlEM
ANSWERSSTATEMENT

IN
LANGUAGE" X"

SPECIALIZED LANGUAGE "X" SYSTEM
L- . --'

This figure indicates the AED approach to system. building.
Any software system. for solving a problem. can be broken down
into four phases: a lexical processor which form.s item.s (words)
from. the individual characters in the input string of the language
being used, a parsing processor which properly groups the item.s
according to the grammatical rules for the language, a m.odeling
processor which extracts the m.eaning and sets up a m.odel suit­
able for com.puter m.anipulation, and an analysis processor which
carries out the desired solution. The AED-l Com.piler is an ex­
ample of such a system. in which the problem. language is AED-O
{based on ALGOL-60} and the "answers" are com.piled {object}
program.s.

Two of the system.-building program.s have been com.pleted-­
the RWORD {read-a-word} System. which uses the sam.e four steps
to produce a lexical processor from. high-level language descrip­
tions, and the AEDJR System. which builds a parsing processor
from. high-level com.m.and-level descriptions of the m.etalinguistic
properties of a new language. A feature of all thes e system.s is
that they are all written in AED-O, which perm.its a process
called "bootstrapping" to be used in transferring the system. to
different com.puters.

Fig. 1 The AED Approach to System Building

-7 -

1. Graphical Notation

The bootstrapping process is most easily described in terms of a

pictorial repres entation which contains all of the relevant information

in a compact form. In this repres entation, the "triangle II symbols

shown in Fig. 2 are used to represent types of program. The current

f;j AED-O Source Program

(j Machine Language Source Program

V Binary Object Program (result of compiling

and/or assembl ing one of the other forms)

Fig. 2 Graphical Conventions for Program Type

AED Compiler generates character-string output for a format accepted

by the existing machine-language Assembler supplied with the Target

computer (which may be the Host Computer). In this way, detailed

concern about binary bit patterns was avoided for the initial bootstrap.

Later, similar techniques may be used to eliminate the Assembler

step by producing bit strings directly instead of character strings. At

present, however, the compilation of an AED-O Language source pro­

gram into binary object program is a two-stage process as shown in

Fig. 3. The compiler and assembler may operate on the same, or on

different computers.

f
AED

Compiler

Fig. 3 The AED Compilation Process

Several further sets of conventions need to be established. One

of thes e is that if a program contains machine -dependent statements,

we write the letter H or T ins ide the triangle to indicate Host or

Target dependence.

-8-

Triangle representation of the six categories of programs of an

AED Compiler creates a hexagon, where the orientation of the tri­

angles within the hexagon depicts each program's category. The

Support Package occupies the bottom half and the Compiler the top

half. AED-O source programs are shown in the left-side (machine­

dependent) and middle (machine-independent) sectors and machine­

language programs occupy the right-side sectors. The sectors for

the graphical notation may thus be identified as shown in Fig. 4.

i
COMPILER

+-SUPPORT
PACKAGE

~
Fig. 4 Hexagon Representation of Program Categories

Using the conventions of Fig. 2 for program type, adding the H

and T symbols to show machine dependence, and showing the environ­

ment via a box around the hexagon, the complete representation for a

Host compiler is obtained as shown in Fig. 5.

input
characters

H H H

operating environment

output
characters

Fig.5 Complete Representation for a Host Compiler

•

-9-

2. Representation of the Overall Bootstrap Process

Using the graphical conventions that have been established above,

the complete process of bootstrapping AED from one computer to

another is shown in Fig. 6. As indicated, this is a three-phase pro­

cess. The first phas e produces portions of a new host-machine

compiler, that with additional steps in the second phas e becomes an

IIH _ Til (half-bootstrap) compiler that operates on the host computer,

but produces assembly language for the target computer that may then

be assembled and run on the target computer. The final phase is to

us e the H - T compiler to transfer the AED compiler its elf to the

target computer.

The process shown in Fig. 6 is rather complex. To complete

this brief summary of the proces s, it is instructive to s elect one

triangle and follow its cours e through the diagram. Figure 7 shows

the path of the machine -dependent AED -0 portion of the compiler

from the original host version to the final target version. We see

that steps 1 through 4 in Fig. 7 prepare a compiler which accepts

AED -0 programs in the Host environment and produc es output for

the Target machine (called the 11 H - T'I compiler). Processing AED-O

programs through this H - T compiler then produces pieces of the

desired Target Compiler.

3. Relative Program Sizes

Up to now, nothing specific has been said about relative sizes

of the six hexagon pieces, and all six have been drawn the same size.

To give a better feel for the extent of true machine independence

which has been achieved in the AED Compiler, and of the reprogram­

ming job involved in the process, data for the May, 1968 bootstrap to

the IBM 360 Computer are shown in Fig. 8. The number of 32-bit

binary machine words for each of the six sectors of the Target Com­

piler is shown by a proportionally-drawn arrow through the sector.

Figure 9 shows a breakdown bas ed on programs and tables.

This distinction is of interest since tables are set up with little new

thinking, whereas programs require creative decisions on the part of

the programmer. The machine -independent AED -0 portion requires

no reprogramming except for a possible redesign of the state beads.

-10-

I-
Z
:g
Z
o
"":>
z
w
l­
V>o
I

I­w
()

""~

I-
Z
:g
z
£?
:>z
w

Machine
Language
Assemblies

H
1 /

----"LISJ =
,/ t I \

H

H

T

Target Assembl er

AED Host Compiler

&&
~

H

H

AED Compilations

\

.... 17\//
-\Ln

/ I ,

""w

==<>-

j ~
V>o
I

""w

==

II ~
~

I
I

KEY: Dotted triangles indicate no manual changes (just "flush through").

\J Solid triangles indicate possible simple changes to progrom mechanics.

::.~~ Highlighted triangles indicate reprogramming.
"

Fig. 6 The AED Bootstrap Process

-11-

/ I \ \,
\
\
\
\
\

o

H H

Assembler

H

__ This

T

- Prepares This

-- For This

T T T

STEP 1: Reprogram with target information.

STEP 2: Compile resulting programs on Host machine.

STEP 3: Assemble resulting programs on Host machine.

STEP 4: Load new Host-resident compiler with reprogrammed pieces.

STEP 5: Rework program mechanics for target machine.

STEP 6: Compile reworked programs on Host machine with
the compiler generated in STEP 4.

STEP 7: Assemble resulting programs on Target machine.

STEP 8: Load target compiler with reworked programs.

Fig- 7 Example of Bootstrap Conversion Flow

8580

24,577

6646

8009

40

36

32

28

24
Machine

Instructions

(thousands 20of 32-bit
words)

16

12

8

4

0

I
......
N
I

Fig. 8 Relative Sizes of 360 Hexagon Pieces (In 32-bit
Words) for May 1968 Bootstrap

AED
Programs

AED
Tobles

Machine
Language
Programs

Machine
Language

Tables

Fig. 9 Sizes of 360 Programs and Tables for
May 1968 Bootstrap

,

I

•

-13-

Most of the "tables" are automatically generated by the R WORD and

AEDJR Systems on the Host computer in the form of assembler macro

calls. Therefore, the only step required to convert the tables for a

new machine is to reprogram the macro definitions with Target machine

information and proces s the macro calls through the existing As s embler

on the Target computer.

The size of the machine-dependent AED -0 program portion will

vary considerably depending upon the target computer. The 360 is by

far the most complex yet used in this regard, so the 7378 program

instructions required for this May, 1968 360 bootstrap should be taken

as a maximum. The portion labeled" Machine Language Programs" in

Fig. 9 have since been reduced by the introduction of the AED version

of the ASEMBL output package. Also, some of the number-conversion

routines and other of the Support machine language programs are

most likely already available in the existing software for any given

Target machine. Thus a considerable part of this section can usually

be 'Istolen" with little reprogramming effort.

C. COOPERATION WITH OTHER GROUPS

The rather broad spectrum of cooperative work with many other

groups, both within and without M. 1. T., over the first eight years of

the computer -aided design work has been recited in some detail in the

previous final report, AFML-TR -68 -206. During this final reporting

period, as work concentrated more on the 360 and 1108 bootstraps,

the M.1. T. association was pri:m.arily with Project MAC (except for

the many M. 1. T. users of AED on various M. I. T. computers). The

number of visitors on the AED Cooperative Program was also some­

what less, but many additional companies and other outside organiza­

tions were working at their own locations with various -level system

releases. These two main associations are summarized below; more

details of the AED Cooperative Program are found in Chapter VII.

-14-

1. M. I. T. Project MAC

Project MAC at M.1. T. is an interdepartmental res earch

activity in time-shared computing techniques, sponsored by the

Armed Forces Res earch Project Agency. Since 1963 the MIT

Computer-Aided Design Project has received very substantial sup­

port from Project MAC in the form of generous access to its power­

ful time-sharing facilities, and allocation of convenient laboratory

and office space. In turn, all results of the Project have been made

available to all users of the Project MAC facilities, (and later the

duplicate facilities of the MIT Computation Center), and it is through

this mechanism that the large number of other departments and pro­

jects have been able to make us e of the Project results.

Over this same period, Project MAC has jointly sponsored

~ith the CAD Project) the work of the ESL Display Group. The work

of this group during the reporting period, which has resulted in a

munber of joint publications, is desc ribed in Chapter VI.

2. The AED Cooperative Program

A very significant association of the Project with outside groups

was the l'AED Cooperative Program" which was in operation from

March, 1964 to July, 1969. This program, which is described in

more detail in Chapter VII, was a unique cooperative venture with

industry whos e primary purpos e was to promote the dis semination

and appreciation of the results of the CAD Project, while at the same

time contributing toward their further advance. Experienced system

programmers from industry joined our regular staff on a visiting

basis for one year to learn about and contribute to the work of the

Project. The contributions of the visiting staff members neatly bal­

anced the educational load on our permanent staff so that not only

was technical progres s maintained, but ideas and skills which could

only be transmitted by active participation were seeded in the most

direct possible way into the vital activities of industry. Perhaps

more than any other aspect of the Project, the AED Cooperative

Program symbolized and made real the unique benefits which derive

from a free and open intermingling of the talents and backgrounds

,

t

-15-

of the academic and industrial community with the stimulation and

support of government sponsorship.

A total of ten visitors from nine companies spent 98 man- months

at M. 1. T. during the reporting period. Participation over the entire

five -year cooperative program was 31 visitors from 21 companies, and

a grand total of 362 man-months, which repres ents a very substantial

contribution to the AED effort by industry. Complete details of participa­

tion are pres ented in Chapter VII.

D. PROJECT TERMINATION

Mr. Douglas T. Ross served as Head of the ESL Computer Ap­

plications Group throughout the period of APT and AED development

and the success of these programs is a result of his technical insight

and leadership. With the phaseout of Air Force support for technical

development in July, 1969, coincident with the release of Public AED,

Mr. Ross and his key associates left M.l. T. to form a company

(SofTech, Inc.) to continue AED -related wo-rk in the private sector.

The period since July, 1969 has been devoted to completion and pub­

lication of AED docwnentation as described in Chapter III, to publica­

tion of several other reports as described herein, and to preparation

and publication of this final report.

Distribution of the Version 3 AED/360 program tapes (on an

at-cost basis for copying) is now being handled by SofTech, Inc.,

and they are als 0 providing system maintenance and other services

to AED users under a separate one-year Air Force contract.

CHAPTER II

FIRST PHASES OF BOOTSTRAPPING AED
TO THE IBM 360 COMPUTER

All developITlent work on AED at M.1. T. froITl 1963 on has been

carried out on the MIT COITlpatible TiITle Sharing SysteITl, utilizing an

IBM 7094 cOITlputer. This second-generation ITlachine was already

becoITling obsolete in 1966, and it was recognized that AED would need

to be ITlade available on ITlore -ITlodern third-generation cOITlputers such

as the IBM 360 and Univac 1108 if it was to be used in the aerospace

industry. The 360 was chosen for initial efforts because of its wide

usage, and plans for a bootstrap to the 360 were forITlulated in NoveITl­

ber, 1966, SOITle six ITlonths prior to the start of the present reporting

period (May, 1967). In order to put the progress under the present

reporting period (May, 1967 to NoveITlber, 1968) in proper perspective,

we will first review this original schedule and the probleITls in ITleeting

it (Sections A, B, and C). Sections D, E, and F then describe the COITl­

pletion of the initial bootstrap in January, 1968, and the successive

Version 1 and Version 2 releases in May and SepteITlber, 1968. The

final phas es leading to Version 3 releas e in July, 1969 are des cribed in

Chapter III.

A. THE NOVEMBER, 1966 360 BOOTSTRAP SCHEDULE

In NoveITlber, 1966 (under the previous contract, AF -33(657)­

10954), a tentative schedule had been established for bootstrapping the

AED SysteITl to the IBM 360 cOITlputer. The schedule (with target

dates) was set up with four phases as follows:

1. January, 1967 - Prepare the basic tools for ITlodifying
the AED-O Second Pass to put out asseITlbly language
for various ITlachines.

2. March, 1967 - Use those tools to compile AED-O
language into 360 asseITlbly language.

-16-

,

\

t

-17-

3. July, 1967 - Modify the AED-O source language
programs for the entire system and bootstrap a
basic working system onto the 360.

4. Fall, 1967 - Prepare a first system for others
to experiment with.

Bas ed on our experience in rewriting portions of the AED-O

System as it evolved in previous years, this appeared to be a tight

but reasonable schedule.

The first phase of preparing the basic tools by January, 1967 was

achieved nicely on schedule as was demonstrated at the Second AED Tech­

nical Meeting held that month at M.1. T. ':' Also the second phase of

generating working 360 assembly language from the 7094 by the end

of March, 1967 was essentially achieved on schedule in that all but a

few AED language features were being compiled at that time.

Just prior to the start of the present reporting period in May,

1967, however, several events and problems occurred which had not

been fores een. Each event caus ed delay in the bootstrap process,

so that the above schedule for phases 3 and 4 was not met. These

events are described briefly below.

B. PROBLEMS IN MEETING PHASES 3 AND 4 OF THE
NOVEMBER, 1966 SCHEDULE

1. Personnel Problems

Eight of the industrial visiting staff members of the AED

Cooperative Program completed their periods of as signment at M. 1. T.

in March, 1967, and their departure required additional effort by the

AED staff to complete checkout and documentation of their program­

ming assignments. At the same time, the key member of the AED

staff on compiler development withdrew from AED work temporarily

Report AFML-TR -68 -206, "Investigations in Computer -Aided Design
for Numerically Controlled Production," Final Report for period
1 December, 1959 to 3 May, 1967, M.1. T. Electronic Systems Lab­
oratory, May, 1968, pp. 151-160.

-18-

in order to devote full time to his M.1. T. doctoral program, and was

not able to resume his AED efforts until September, 1967.

2. Computer System Problems

A set of technical problems arose that had to do with the 360

computer and its operating system. In spite of excellent cooperation

from IBM and MIT Computation Center personnel, a job of this mag­

nitude is bes et with pitfalls. We had been using 360 computers at the

IBM Cambridge Scientific Center and at the MIT Computation Center.

Only IBM had a time-sharing system, and even there all AED work

was funnelled through a single console. Also, the operating system

rules changed several times as equipment was modified and updated,

especially at the Computation Center, causing some lost time and

much trauma.

We went through several schemes to transfer programs gen­

erated on the time-shared 7094 to these 360 systems, including the

problem of converting from seven-track to nine-track tape and con­

verting from BCD to EBCDIC code. Finally a fully automatic process

was developed and implemented via a "runcom" command in time

sharing, but still the shortage of disk tracks and limitations on the

size of 360 runs forced files to be proces s ed in small batches.

There was a minimum two-day turn-around time to modify,

recompile, retransfer, reass emble, and rerun a file. Debugging took

place in terms of machine patches which then were updated into the

source decks, introducing another place for mechanical error. Op­

erating on several computers also introduced further delays due to

down time (on one computer or another) and scheduling conflicts,

which occasionally caused an extra day or two to be slipped into

schedule. The benefits of doing all work within a single powerful

time -sharing system are painfully obvious when that system is not

available. For a time, additional delays were incurred while we pre­

pared tapes and tables for transmission to United Aircraft Corporation

for the 1108 bootstrapping. Here again, several tries were needed to

achieve the desired transmission in some cases, and since these ac­

tivities us ed the same system resources and people, the 360 effort

was unavoidably stretched out.

,

-19-

3. 360 Code -Generation Problems

Another set of very time-consum.ing debugging runs resulted

from the complexity of the OS/360 operating system. Many essential

characteristics of a detailed nature were unknown and no source of

the requisite information could be located. Therefore the preparation

of the Input-Output Buffer Control Package (IOBCP) for the 360 took

longer than anticipated.

Various characteristics of the 360 machine language and system

organization make it a difficult computer for which to construct a sophis­

ticated compiler. In particular, the use of base registers wrecks havoc

with pointer mechanization and complicates subroutine calling mechan­

isms. From the beginning it was decided to make AED fully compatible

with the standard Fortran IV calling sequences to yield a compatible

system. Many of the characteristics of the 360 forced us to change our

original plan of leaving the AED -0 Second Pass unchanged for generat­

ing 360 instead of 7094 machine code. Write-arounds to make the 360

behave like the 7094 would have been impossible or exorbitantly expen­

sive. Therefore, several major and important parts of the Second

Pass had to be rewritten from scratch, bringing in the additional de­

bugging which we had sought to avoid. Other problems, such as the lack

of a I'movie table" in the loader, and the fact that the operating system

allows only six entries per subroutine library added additional, though

moderate, uns cheduled burdens.

4. File Editing ProbleITls

Dntil we started the conversion proces s, we had not realized the

vast file-ITlassaging work load involved in bootstrapping the AED

SysteITl. We knew we would have to change the declaration portions of

each prograITl to accoITlmodate the difference in word size between the

7094 and the 360, but had thought of this as a straightforward and quite

routine ITlatter. Because of the 360 ITlachine code probleITls, however,

it was found that we had to re-examine every single program to declare

pointer variables as pointers rather than integers, as had been previously

the case in AED-O. In some cases a value is used both as a pointer and

as an integer, necessitating furtrer re-work (and debugging). Also, in

-20-

AED-O the use of labels had been allowed to violate Algol block struc­

ture, and the 360 implementation would not allow this. Therefore,

once again, various programs required modification.

Finally, just the physical magnitude of the data processing load

involved in all of thes e file manipulations forced us to make various

major reorganizations of files in order to make use of the. INSER T

feature to minimize the number of distinct copies of files and systems.

Since we only learned the necessity for these requirements gradually

from experience, many major source files were re-edited and re­

checked two or three times.

We also added to our burden slightly by inserting remarks,

comments and program documentation to the source files as they

were reworked, so that they would be more understandable to future

users and bootstrapping teams. This was a worthwhile investment

of time, but caused further delay.

5. Compiler Problems

Another difficulty which had a profound effect that we did not

anticipate at the beginning concerns the fact that the bootstrapping

compiler its elf was being debugged as we performed the bootstrapping.

In our previous reworkings of the AED System, primarily during

1964, most of the early changes were made in the F AP as sembly lan­

guage, and since the FAP assembler was well debugged, only individ­

ual modules required change and reassembly as we modified the

system. In the present case, however, whenever a compiler error

was discovered, we were forced to recompile and reassemble all

affected programs processed up to that point. Thus some of our ear­

lier programs were processed completely three or four times, includ­

ing all of the time delays of processing small numbers of files at one

time, transferring from one machine to another, scheduling debugging

time, etc., etc. Even though the source files did not always need

further re-editing, this, massive recompiling. of programs greatly

added to the tedium and delay in the proces s. This effect further in­

tensified our interest in having the second pass of the compiler as

machine independent as possible, since as long as the compiler itself

is being debugged, the vicious circle is inherent in the bootstrapping

concept and cannot be escaped.

,

\

-21-

6. New AED-O Language and Subsystems

A final delaying factor was the unexpected need for additional

software tools to accomplish the bootstraps. The 360 byte addres sing

(rather than 7094 word addressing) led to the need to distinguish

between AED-O pointer and integer data. Therefore, the AED-O lan­

guage itself was augmented slightly to allow for pointer declaration

and a new form of equivalence to permit distinct pointer and integer

symbols to refer to the same value. Improved code generation was

needed, including efficient handling of transfer of control and testing

of boolean expressions. An entire new subsystem was also created,

called D. FEAT which permits automatic deletion of symbols from

secondary declaration statements when primary declarations are

deleted. This permits single large declaration files to be maintained

for inserting in many source files, and a simple deletion (which may

be done with the Feature Feature if desired) causes the coupled

declaration statements to automatically be modified to conform. This

not only allows complicated program changes to be kept in phas e, but

also yields shorter compiled programs.

C. REVISION OF 360 BOOTSTRAP SCHEDULE
IN NOVEMBER, 1967

By the end of November, 1967, all of the above delaying factors

were clearly understood, and a meaningful re-evaluation of the sched­

ule was possible.

Looking back over the effort to that date, 200 major files, each

containing many programs had been edited, compiled, and assembled

into 360 machine code. Of those files, about 36 had undergone major

rewrites, 12 of them for the new Second Pas s features.

The 1966 AEDJR "like" mechanism yielded a much more reliable

processing of the AED-O language than the old system, and this was

reflected in much more meaningful error comments to the user. AED-O

is a big, rich language. The AEDJR description of AED-O involved 429

lines of vocabulary word definitions, and 1381 lines of "like II specifica­

tions J attribute declarations J etc. In addition almost 70 special execute

programs had to be written to provide fine control over errors and

elegant parsing. Actually, there were three separate parsings of

-22-

subsets of the AED language used in the AED-l processor to give the

proper context control for symbol-table building, macro expansion,

and code generation. It was anticipated that having all of this informa­

tion in the convenient AEDJR form would make system maintenance

and improvement much more flexible as the system evolved in the

future.

As of November, 1967, approximately 320,000 bytes of 360

machine code had been generated, and we anticipated that the final

system would be in the vicinity of 500,000 bytes once all the remain­

ing packages and systems were bootstrapped. It was too early at that

time to make any estimates on the minimum 360 configuration that

would be required to run the complete system, and no sensible mea­

sures of operating efficiency were yet possible.

With these statistics in mind. a new schedule was set to com­

plete the bootstrap of all programs to the 360 by the end of 1967.

Since most subroutine packages and the AEDJR System had already

been tested on the 360, the goal of having a working compiler before

the end of January, 1968 was set. with a plateau release of "Version 1"

shortly thereafter.

D. COMPLETION AND EVALUATION OF INITIAL
BOOTSTRAP. (JANUARY. 1968)

The first succeS sful AED -1 compilation on the 360 was performed

as scheduled in January. 1968, followed by a testing period under the

OS/360 environment in February. An overall evaluation of that initial

version of AED -1 resulted in the conclusion that no release of AED-l

could be made, due to the size and efficiency of the compiler. which

was prohibitive on a model 360 with 256K bytes of core (a common con­

figuration for many of the potential industrial AED users).

However, by reorganizing the compiler pass es slightly, recom­

piling the data structures with a more compact format. and certain

other minor programming changes, a much better compiler seemed

attainable with relatively little additional manpower and time invest­

ment. All modifications to the AED -1 logic stopped, pending the re­

lease of the revised system, scheduled for May. 1968.

I

'.

-23-

As-a first step in the process, due to the easy accessability of

the 7094, the revis ions were made and checked out us ing CTSS. ThIs

consumed the month of March. The 84 source files comprising the

heart of the compiler were then bootstrapped to the 360, using the

revIsed 360 data structure. With the maximum of about two boxes of

ass embler source input cards per run and 24 to 48 hours turn-around

on the 360, along with errors in the new data structure definition

which caused several recompilations, the total bootstrapping process

took the month of April.

The month of May, 1968 was spent catching obscure bugs in

AED -1, such as errors in output format when a single". C." character

string exceeded a single assembler card in length, faulty compilation

of the phrase COMP (LOC ATOM), etc. This shakedown process pro­

ceeded as rapidly as possible, with a minimum of 48 hours between

discovery of a bug, bootstrap compiling the correction, 360 assembly

of the resultant machine language program, and redoing the link-edit

of the 360 compiler to incorporate the correction on the 360.

E. VERSION 1 RELEASE OF AED/360 (MAY, 1968)

The May, 1968 schedule was met, and a field-trial, special re­

lease of a slightly restricted version of the total AED System was made

for thos e us ers who wished an early vers ion for experimentation pur­

poses. This was known as Version 1 AED/360. A copy of this system

was sent to those users who sent a written request, along with a reel

of magnetic computer tape on which to copy the system.

The May, 1968, release contained the following items:

1) The AED -1 Compiler, with the following restrictions:

a. No PRESET language

b. No BLEBR language

c. No PRINT, READ, and FORMAT statements

d. No Macro Pass (and therefore no PRALG option)

2) The AEDJR System (complete)

-24-

3) The following packages:

a. Free Storage (complete, zone-structured version)

b. Input-Output Buffer Control Package (IOBCP)

c. Generalized Output (ASEMBL)

d. Generalized Input (RWORD)
(RWORD3 only. RWORDI and RWORD2
not yet available)

e. Other small user packages
(ISARG, DOlT, NUMTOC, etc.)

The missing pieces (PRESET compiler language, compiler Macro

Pass, RWORDI and 2, etc.) were still being debugged, and a full, com­

plete system was scheduled to be distributed as a Production R eleas e

in the Fall of 1968.

At this point, sufficient experience had been gained using AED-l

and AEDJR on the 360 to permit publication of some figures concerning

execution time and memory requirements.

1. Size Considerations (Version 1)

Generally, the AED System Version 1 would easily fit on a 360

model 40 or larger, with a minimum of 256K bytes of core memory

and direct-data disk facilities. Specifically, the compiler required

approximately 30,000 decimal words and AEDJR about 22,000 decimal

words of core memory, not counting the 360 Operating System. Com­

paring these sizes to the equivalent 7094 programs, there was an

increase of between 25 to 35 percent in 360 program size.

This increase was due to several things, but the two major

reasons were (1) size of data tables and (2) size of the instruction

sequences required to enter and leave procedures. To elaborate on

these, the 360's 32-bit word size clearly cannot contain as much

packed data as the 7094's 36 -bit word. In addition "pointers" require

24 bits (because of byte-addressing) on the 360, whereas they only

require 15 bits on the 7094. This restriction permits only one pointer

per word on the 360, whereas the 7094 permits two per word. Since

both AED-l and AEDJR make heavy use of pointers packed into large

data structures, they pay the resulting space penalty.

-25 -

The inefficiency of the call and return mechanism necessary to

enter and leave procedure bodies was a consequence of the decision to

be compatible with standard IBM Fortran conventions. That is, every

time an AED procedure is entered or left, certain machine conditions

must be saved and restored in a particular way to maintain compat­

ibility with other compilers such as FOR TRAN. This cost heavily in

both space and time, but had to be done for compatibility. To remedy

this inefficiency, the AED staff devised a new instruction sequence

which cut both the time and space of the enter/leave sequences in half,

while still maintaining compatibility. To incorporate this change into

the AED-l files would, of course, require reassembling all decks

with the new sequence. This was planned for the Version 2 release,

and it was estimated that a saving of 8,000 bytes of memory would

result, plus significant time savings.

2. Execution Time (Version 1)

When considering efficiency of execution time, a distinction had

to be made between the cost of I/O operations, operating system over­

head costs, the cost of calling procedures versus I'in-line" coding, the

cost of logical-type statements versus arithmetic operations, etc. It

was not feasible for the AED Project to expend the effort at that time

to perform such an in-depth analysis. However, sufficient experience

had been gained to touch on most of thes e areas and to at least give a

good, over-all picture of the execution-time efficiency problem. The

AEDJR System was used for the majority of the study, since it had

been in operation on the 360 for a much longer period of time than

AED-l.

Several different runs were performed with the same identical

AEDJR deck on the MIT360 and 7094/CTSS Systems. The deck us ed

contained 44 VDEF cards, a I'FRESH RUN':'" card, and 18 cards in the

language defined by the VDEF statements. The deck was run with all

possible I/O active (LOUD RUN, SHOW ALLALL, STATE, and SIM

LONG AEDJR options), and then with no printed output requested in

an attempt to see the cost of the AEDJR debugging printouts. The

same deck was run on the 7094 and 360. The 7094 runs were per­

formed several times, and the average run time was calculated, since

-26-

these numbers vary somewhat due to machine activity. The "swap

time'l print given in the CTSS "ready message!1 was considered the

system overhead.

On the 360, a special statistics job was prepared which read the

computer clock immediately before and after the AEDJR System was

called and printed the difference between the two readings. Due to

variations in clock readings, thes e runs were performed several times

and an average time calculated. By subtracting this time from the

total time charged at the end of the job, the 360 overhead charge was

determined. Lastly, the 360 AEDJR overlay system was run to deter­

mine the cost of running the overlay versus non-overlay versions.

There was no detectable difference in the timing of the two versions

for the small test cas e run. The results of all thes e runs are shown

in Table I.

3. Evaluation (Version 1)

There are several aspects of the Version 1 statistics given

above which should be pointed out to avoid drawing wrong conclusions.

First, the CTSS console print is very expensive in swap time, execu­

tion time, and programmer time required to sit and wait for a lengthy

print to be typed on a CTSS console. Therefore, it is doubtful that the

run entitled '17094 with Console Print'l represents a common situation,

but it is presented for completeness.

Another pertinent fact is that the charging technique employed

for the MIT 360/65 does not bill the user for read-in or print-out time,

since the ASP system delegates this task to the 360 model 40, which is

considered "off -line II. Also, the charges quoted were M.1. T. rates

which are considerably less than commercial computer time charges.

Although we were pleas ed with the initial efficiency of the 360

AED Version I programs, it seemed likely that the future would bring

dramatic reduction in both size and execution times as the system was

Ilpolished'l. On the other hand, no improvements in 7094 AEDJR time

were foreseeable. For example, the 360 Version I subroutine entry

and exit techniques employed were to be changed, cutting the enter/

leave execution time in half. Because of the extensive use of proce­

dure calls for modularity in AEDJR, a noticeable increase in efficiency

was fores een.

-27-

Table I

Comparison of Run Time and Cost for
Version 1 AEDJR on the 7094 and the 360

7094 WITH CONSOLE PRINT

AEDJR SYSTEM OVERHEAD TOTAL..
TIME (SEC) 9.85 11. 7 5 21. 60

COST (PRIME) $0.82 $ 0.98 $ 1. 80

COST (LOW PRIORITY) $0. 55 $ 0.65 $ 1. 20

7094 WITHOUT CONSOLE PRINT

AEDJR SYSTEM OVERHEAD TOTAL

TIME (SEC) 3.45 $ 3.80 7.25

COST (PRIME) $ 0.29 $ 0.31 $ 0.60

COST (LOW PRIORITY) $ O. 19 $ 0.21 $ 0.40

360 WITH LINE PRINT

AEDJR SYSTEM OVERHEAD TOTAL

TIME (SEC)

COST (HIGH PRIORITY)

COST (LOW PRIORITY)

3.80

$0.32

$ 0.21

8.80

$ 0.73

$ 0.49

12.60

$ 1. 05

$ 0.70

360 WITHOUT LINE PRINT

AEDJR SYSTEM OVERHEAD TOTAL

TIME (SEC) 2.05 6.95 9.00

COST (HIGH PRIORITY) $ 0.17 $ 0.58 $ 0.75

COST (LOW PRIORITY) $0.11 $ 0.39 $ 0.50

-28-

"System overhead" also deserves more careful consideration.

The CTSS charges given above did not include the user access charge,

console rental, us er file directory charge, or disk storage charge,

whereas the 360 charges were really total cost. Therefore, some

fixed percentage should really have been added to the 7094 cost figures,

although this amount was unclear.

Another aspect of system overhead should be mentioned to place

it in perspective. Namely, the 360 overhead amount is essentially

constant no matter how large the AEDJR job, since it costs only so

much to bring in AEDJR from disk to core and proc es s the job control

cards to start and stop the job. However, CTSS overhead (swap time)

varies dramatically depending upon number of active us ers on the

system and how large a core image is created by the AEDJR run, plus

several other minor variations.

Finally, programmer time and real time required to debug pro­

grams are not considered. Whereas it is possible to process at most

two or perhaps three runs of a single job in one day with the 360 batch­

processing technique, the 7094/CTSS system affords an essentially

unlimited number of runs per day. This aspect cuts the real-time

program de bugging time dramatically on C TSS, but also probably in-

c reas eS the number of runs, since les s desk-checking results from

the easy machine access afforded by CTSS.

F. VERSION 2 RELEASE (SEPTEMBER, 1968)

After the release of the Version 1 plateau in May, 1968, the AED

Project compiler efforts concentrated on the following areas:

1) Bootstrap the remaining pieces not included
in the Version 1 plateau, heading toward a
Version 2 plateau.

2) Receive and act upon suggestions, error reports,
etc. from the V ers ion 1 field trial us ers.

3) Distribute additional copies of the Version 1
system upon request.

An organized checkout was begun using the special test cases

formerly used to check out AED-O on the 7094. Each of these eleven

-29-

test cases exercis es one or two language features, so that once all of

thes e tests were succes sfully com.piled and executed, the m.ajority of

the bas ic as well as the m.ore obscure statem.ent form.s would be checked.

Work on Version 2 began with the PRESET and BLEBR features.

An investigation also began on the feasibility of incorporating the

Octal Stream. Package.

The Alarm. Package effort was revived, along with a set of m.ore

detailed AED -1 error m.es sages to be incorporated as an additional­

com.piler overlay which is called in if any alarm.s have occurred dur­

ing com.pilation. This alarm. reporting was scheduled to be incorporated

as soon as pos sible, since the Version 1 alarm.s were designed for

debugging and not for general users. Several m.inor changes in the

Alarm. Package seem.ed desirable, and the changes were m.ade.

The Macro Pass underwent som.e revisions in preparation for

hooking it up to the rest of the com.piler. Specifically, the following

steps were scheduled:

1) Transferring of som.e "executes" from. Phas e I
to the Macro Phase.

2) "Marking" of the m.acro vocabulary tables.

3) Shifting to the AED -1 data structure.

4) Change of control from. the general-purpose
AEDJR System. to a hand-tailored production version.

5) Proces sing of partly proces s ed . INSER T files.

6) Bootstrapping to the 360.

Step 1 was begun during May, 1968. The various schem.es for

m.ore efficient procedure enter/leave m.acros were re-exam.ined and

two versions were coded. The efficient version perm.its AED procedure

to call on non-AED procedures only, while the less efficient version also

perm.its non-AED procedures to call upon AED procedures. Checkout

of these schem.es began soon after release of Version 1-

During the m.onth of June, 1968, five m.ore copies of Version 1

were sent on request, m.aking a total of eight com.panies having the

Version 1 system.. No com.m.unications had been received regarding

-30-

problems encountered in getting the system to operate properly, so

it was as surned that the distribution techniques were working well.

Meanwhile, shakedown continued at M.1. T. Several minor bugs were

uncovered and corrected. The archive of special test cases for the

AED-O Language features was helpful in this regard. Several of the

tests required the PRESET facility, which was not yet available until

Version 2.

During June, work on Version 2 continued, and all programs

required to handle the PRESET facility were written. A new version

of AED -1 was generated on the 7094 to include new, more efficient

linkage conventions at the entry and exit of subroutines. This ver­

sion also had an improvement in the code generated for one-bit

components and storage -to -storage moving operations. Thes e

changes were incorporated into the 360 AED -1.

During July, 1968, the initial version of the programs to proc­

ess the PRESET language were debugged, but it was decided to

rework the programs to move s orne of the Phas e III programs to

Phase II.

In August, 1968, Version 2 of AED-l, containing the PRESET

feature was working on both the 7094 and 360. Some additional

shakedown was fores een before releas e of the new system to partici­

pants. Files were reorganized in preparation for the release. The

modifications to add the full alarm print to AED-l were also com­

pleted and working on the 7094. Bootstrapping to add this feature to

the 360 began shortly thereafter. Macro Pass debugging continued.

The first 'Ireal-life II user of the system revealed some problems, and

these were corrected.

During September, tests of Version 2 of the 360/AED-l Com­

piler, AEDJR, and AED subroutine packages were completed, and

copies of Version 2 were distributed to those companies having mag­

netic computer tapes at M. 1. T. of the new release. By the end of

Contract F 33615 -67 -C -153 0 on November 30, 1968, thirteen copies

of Version 2 had been released, including a copy sent to Bell Helicopter

(Fort Worth) during November. Discus sions with thes e companies

during November were very helpful in locating compiler bugs and in

-31-

discussing the process of setting up problem-oriented systems with

AEDJR.

Meanwhile, work had continued at M. 1. T. on the remaining

pieces of AED -1, working toward a Version 3 which would include the

Macro Preprocessor. This work, which was conducted under the

follow-on Contract F33615-69-C-1341, is discussed in Chapter Ill.

G. AED QUESTIONNAIRES

Subsequent to the Version 2 release, it was felt that "outside"

recipients of various field-trial versions over the preceding three

years had perhaps had enough experience with them to provide some

valuable feedback concerning the comparison of AED with other avail­

able programming systems. Thus, with the approval of the Project

Monitor, a questionnaire, shown in Appendix A, was prepared and

distributed to all recipients of AED systems and documentation. These

questionnaires were mailed in late May, 1969, with a requested return

date of June 27.

Fifty-four completed questionnaires were received. The results

indicated that ten organizations had actually used AED, that some 60

engineers and programmers had learned AED, and that AED had been

used in 17 different programming projects. Usage of various field­

trial versions was as follows:

Computer Usage

7094 7

1108 Exec2 4

360 OS 6

360 CP/CMS 4

One question asked for free -form comments as to the strongest

and weakest features of AED. The following were the most frequently

cited attributes or weaknes s es (with number of mentions):

-32-

Strongest

Generality 13

Data Structuring 12

Flexibility 8

Language 7

Free Storage 7

System Building 6

Program Structure 3

AEDJR 3

RWORD 2

Weakest

Documentation 18

r/o Handling 5

Speed 4

Size 3

From the above, it was clear that lack of adequate documentation

was a major is sue, but work on new documentation was already well

under way, as will be described in Section C of the next chapter.

Another question asked recipients to make comparative ratings

of AED with three other high-level languages, and with as s embly

(machine) language, for use in five major areas of programming:

res earch investigations, general programming, system building,

graphics, and data base management (there was also an "other cate­

gory, but so few replies were received that it has been omitted from

analysis). The results, graphed in Fig. 10, indicate that the potential

of AED was most clearly recognized in the areas of system building,

graphics, and data base management, although Fortran was preferred

for general programming.

Another way of looking at the results is given in the bar chart

of Fig. 11. Here the two weakest (l and 2) ratings for all categories

have been summed and averaged and shown in white. Similarly, the

shaded bars show overall averages for the two strongest ratings (4

and 5).

It is realized that these comments and opinions are based on a

fairly small sample. However, they do indicate that those who have

had the opportunity to become acquainted with AED recognize its

pres ent capabilities and potential for the future.

-33-

-34-

50 .------------------------.....,

o = AVERAGE OF TWO LOWEST RATINGS

~ = AVERAGE OF TWO HIGHEST RATINGS

40 f-------------------------j

t
(f) 30
w
:::i
a..
w
0::

LL 200

•

COBOL ASSEMBLY FORTRAN PU1 AED

Fig. 11 Composite Ratings for all Programming Areas
(54 Questionnaire Returns)

CHAPTER III

THE FINAL (VERSION 3) AED/360 RELEASE

The Version 1 and Version 2 AED/360 releases described in the

previous chapter were considered to be interim field-trial systems.

Work during the final phase of the M.LT. Computer­

Aided Design Project in the seven-month period from 1 December 1968

to 31 July 1969 under Contract F-33615-69-C-134l was concentrated

on achieving and properly documenting a fully releasable AED system

for IBM 360-series computers. This final MIT system, which became

known as Version 3(or "Public") AED, was formally announced at the

Third AED Technical Meeting held at M.L T. on July 15, 1969.

This period was one of frantic activity in incorporating additional

features available in the 7094 CTSS version of AED, making design

improvements to improve efficiency, and documenting features of the

language and systems which were still subject to change right up to the

end. This activity can best be described by presenting the significant

changes incorporated into Version 3, a detailed description of the contents

and format of the Version 3 release tapes, and a description of the docu­

mentation that was prepared.

A. NEW FEATURES OF AED VERSION 3

During the final stages of work leading up to the Version 2 release

in September, 1968, a certain amount of work had been done in prepa­

ration for the later Version 3. The Macro Preprocessor had been

checked out on the 7094. but before compiling the programs for other

computer, it was decided to reorganize the programs to increase the

efficiency of macro call processing. The revised programs expanded

macro calls using a single pass over the macro body instead of one pass

to substitute arguments and perform other preliminary processing, and

a second pass to finish the macro expansion.

The Mac ro Pas s checkout was completed on the 7094. and all of the

source programs were compiled for the 360. Debugging of the 360

Mac ro Pass was about to begin. The "external data" feature was also

added to AED-l to allow the user to distinguish between external data

and external programs instead of the trickery formerly required.

-35-

-36-

This new facility was added to the 7094 version of AED-l during November,

1968, and was added to the 360 version shortly thereafter.

Work on the compiler alarms had also continued. The review of all

of the compiler alarm messages was concluded, and the new messages

were typed into the alarm files in the 7094 CTSS System. Since additional

alarm data was needed for the new, more specific messages, several

alarm procedure calls had to be changed. At the same time, a "terminating

phase" number was added to each alarm call, and the alarm processing

program was changed to examine this data and terminate the compilation

at the end of the phase.

The most significant change introduced in the Version 3 compiler

was the redesign of the procedure linkage scheme. The Version 3

linkage scheme reduced both the procedure call time and procedure body

storage overheads. For example, the time overhead per procedure call

was reduced by a minimum of 30% for non- recursive procedures and by

a factor of 10 for recursive procedures. The fixed storage overhead per

procedures was reduced by a factor of two.

The principal design change which permitted the improved performance

was the assignment of 360 general register 12 to contain permanently the

address of a control section where all utility routines are located. In

order to obtain the maximum benefit from this convention the contents

of register 12 must be guaranteed at the entry to an AED procedure. This

is, of course, not possible when a non-AED procedure calls an AED

procedure. Thus two modes of compilation were implemented: the non­

compatible and the compatible mode. In the non-compatible mode it is

assumed that register 12 is properly set upon entry to a procedure. In

the compatible mode no assumptions are made as to the contents of

register 12. The standard compilation mode is the non-compatible mode.

The compatible mode is forced by specifying the option FORT.

Although it is possible to mix procedures with the Version 2 and

Version 3 linkages, difficulties will be encountered during abnormal

returns which encounter both types of procedures on the stack. Also,

access to optional arguments of Version 2 procedures with the Version 3

ISARG package will not work properly. Because of these difficulties and

because all future maintenance will only cover Version 3 it is strongly

recommended that all programs be recompiled as soon as possible with

the Version 3 compiler. Programs written in assembly language usin[:

-37 -

the ENTER, LEAVE and GETSAV macros should require minimal

changes as long as the spirit of the macros was not violated by excessive

knowledge of their expansion.

The Version 3 system corrects certain omissions of previous AED

systems as well as introducing some features not previous ly announced.

1. Additions to the Compiler

a. The stack manipulation language (BLEBRS) was implemented.

b. The POWER (**) operator was implemented.

2. Additions to the Language

An EXTERNAL data facility was added to the language. The

new reserved word EXTERNAL is used to declare that an identifier

of type REAL, INTEGER, BOOLEAN or POINTER (scalar or array)

is an external data item.

An external identifier must be defined in precisely one com­

pilation and referenced from all other compilations in which it is

declared EXTERNAL. A definition is distinguished from a reference

by requiring that the identifier be PRESET in that compilation which

defines it. Since the actual linking of references to definition is done

by name through the loade r (linkage editor), multiple definitions are

detected at loading time by that program.

The syntax of the external declaration is:

EXTERNAL identifier [, identifier] * $,

Example:

BEGIN

POINTER A, B $,

INTEGER ARRAY C{ lO) $,

EXTERNAL A, B, C $,

PRESET A == B $,

END FINI

-38-

In this example, A is an external pointer defined in this com­

pilation, B is an external pointer and C is an external integer

array both of which are only referenced in this compilation and thus

must be defined elsewhere for a successful execution.

3. Implementation Changes

a. The procedure linkage mechanism was changed as follows:

General Register 12 has been assigned to contain permanently

the address of control section $AEDLNKG. The $AEDLNKG

control section contains those programs which effect the call

and return mechanism as well as several common routines (i. e. ,

mode conversion, EXIT, ABEXIT).

Register 12 must never be destroyed.

Register 12 is loaded with the address of $AEDLNKG in one
of two ways:

1. At entry to an AED external procedure whose name is
MAIN.

2. At entry to any AED procedure compiled using the FORT
option.

The FORT option allows AED procedures to be called from

FORTRAN compiled programs. An AED procedure can

always call a FORTRAN subprogram since the FORTRAN

call-return mechanism saves and restores all necessary

registers. However, a FORTRAN subprogram may only

call AED procedures compiled with the FORT option since

the contents of Register 12 while in a FORTRAN subprogram

is unpredictable.

b. The implementation of label and procedures passed as arguments

is consistent with the value of the LOC operator.

The address passed in an argument list for a label or procedure

Q agrees with the value of a pointer variable P set by the

statement P = LOC Q.

This implementation change affects users of the DOLT package

and of packages having exchange functions for procedures

arguments.

-39-

1. Use of DOLT for abnormal return.

One application of the DOLT package is to set up a label

as a global error return point by means of a pointer variable

and use this pointer as the argument of DOLT whenever one

wants to "re-start" the program. This usage of DOLT

guarantees that the dynamic storage in the stack of active

procedures is properly returned.

To set up the pointer variable one writes:

LABL. POINTER = LOC ERROR. RETURN $,

ERROR. RETURN $ •..

Then, to effect a transfer to ERROR. RETURN from anywhere

one writes:

DOLT (LABL. POINTER) $,

This mechanism works as long as the invocation of the

procedure which set up LABL. POINTER is still active, i. e.,

has not returned. In previous versions of the AED System,

this mechanism was made to work by writing:

DOLT (WHOLE (LABL. POINTER)) $,

where WHOLE is an unpacked pointer component with $=$

value zero.

2. Use of exchange functions with procedure arguments.

Packages allowing user supplied procedures to perform

interface functions occasionally use a method of specifying

such functions called the exchange procedure. In an exchange

procedure the user supplies as an argument the new value of

a parameter and receives upon return the old value of that

parameter. When the value that is being exchanged is a

procedure, the only means of returning the old value in

AED-O is by means of the catch-all type pointer. Thus,

what the exchange procedure actually returns in this instance

is the LOC of the old value. Consequently if one wishes to

restore the old value of the parameter, this extra level of

indirection must be removed by means of an unpacked com­

ponent with $=$ value of zero.

-40-

The following example illustrates the technique:

Procedure SETOUT is used to set the output procedure

in the ASEMBL package. The form of the call to SETOUT

is :

old.proc = SETOUT(new.proc) $,

where

and

new. proc

old. proc

is a PROCEDURE

is a POINTER

In order to establish the old procedure WHERE LOC is

set in old. proc one must issue the following call:

SETOU T (WHOLE(old. proc)) $,

where

WHOLE is an unpackaged pointer component with

$=$ O.

c. In the SYSIN file produced by the compiler, double-indexed

instructions using only one of the two possible registers now

always use the base register .field. Previous versions used

the index register field. This change should save around 10%

of the total CPU time.

do Argument lists of procedure calls are assembled at the end,

after DATA, instead of in-line. This saves the time and storage

of a NOPR in most calls.

e. Statements of the form:

A = B $,

A(B) = C(D) $,

compile, when nesting conditions permit it, into more efficient

code using move instructions, NI instruction, or 01 instructions

depending on the types and value of both sides of the "=".

£. The first word of a CSECT contains a 0 in the first byte and

the address of the static data area (DATA) in the last 3 bytes.

-41-

4. New System Features

a. MACRO Preprocessor

The AED MACRO pre-processor is available in Version 3 for

the first time, and is available as a stand-alone processor inde­

pendent of the compiler.

b. Debugging Facility

The Version 3 system provides a library containing a debug

version of the $AEDLNKG control section and a package for

selective tracing and other debugging functions.

The debug $AEDLNKG provides a basic facility of calling a

tracing procedure upon entry, exit and abnormal exit of any

procedure. The names of the procedures for which tracing is

desired and the LOC of the corresponding procedures to call are

obtained from a user supplied external array (. AEDBG).

The basic facility provided by the debug $AEDLNKG is exploited

by the TRACE package to allow the user to:

1. TRACE any procedure by name

2. INTERRUPT execution at entry and/or exit of any user
procedure

3. Examine and modify memory while 'interrupted'.

4. Change the trace and/or stop information while 'interrupted'

5. Specify any user tracing procedure while 'interrupted'

The interrupt facility can be effectively used only on a time­

sharing environment.

c. A new free storage package incorporating most of the features

of the large free storage system but which provides higher

performance and a cleaner operating system interface.

d. Numerous improvements in the labrary at the operational level.

-42-

B. CONTENTS OF AED VERSION 3 RELEASE TAPES

The following describes the format and contents of the tapes included

in the Version 3 AED release. It also describes how to use the tapes to

activate AED at a new installation, and gives sizes of various setups under

both batch (OS/360) and time sharing (CP/CMS).

Version 3 of AED-I for the IBM System 360 Computer is contained

on four reels of magnetic computer tape. The four tapes are divided into

the following logical categories, with one tape for OS/360 users, two tapes

for CP/CMS users, and one tape for both OS and CP/CMS users:

Tape No.

I

2

3

4

Contents

Source Programs

Partitioned Data Sets for
Running AED

Modules and Libraries for
Running AED

Text Files

Operating System

OS/360 and CP/CMS

OS/360

CP/CMS

CP/CMS

The remainder of this section describes the tape contents in more detail,

and describes how to use the tapes to get AED in operation at a 360

installation.

1. Tape I: Source Programs

Tape 1 contains the 540 source programs for the AED-l Compiler,

the AEDJR System, and the AED Subroutine Libraries. The tape also

includes two simple test cases, one for the compiler and one for

AEDJR. They are included to give ~ confidence that no malfunctions

(such as bad tapes) have occurred in the copy process.

The tape has a standard tape label with identification AEDOOI and

is blocked at 800 bytes (10 cards) per record. The master tape is

recorded at 800 B. P. I. density in 9-track form, but copies may be

requested at other densities and in 7 -track format, if desired. The

total tape contains approximately 64,000 cards of EBCDIC source

data written primarily in the AED- 0 Language, with a few 360

Assembly Language, AEDJR, and RWORD System input-language

programs. The programs are grouped into 11 files, as follows:

-43-

File No. of Tape
No. Programs Records DSNAME Contents

1 104 2078 AEDSYSOI AED-l Compiler

2 88 565 AEDSYS02 AED Library (AED- 0 Source
Programs)

3 92 707 AEDSYS03 AED Library (360 Assembly
Language Programs)

4 17 47 AEDSYS04 Assembler Macro Library

5 35 217 AEDSYS05 "Fast Free" Free Storage
Package

6 44 420 AEDSYS06 • INSERT Files (declarations)

7 67 802 AEDSYS07 AEDJR System Source

8 70 1059 AEDSYS08 AED-l Macro Pass Source

9 10 253 AEDSYS09 TRACE Debugging Package

10 13 222 AEDSYSlO SHOWIT AEDJR Example

11 2 110 AEDSYSII Simple Test Cases

The tape uses the standard IBM distribution method for source

programs: input to the 360 IEBUPDAT program, a basic OS/360 utility

for creating and editing source program libraries. The tape contents are

designed to c reate a single 360 Partitioned Data Set source library for

each of the ten files listed above. To create such a library, the user

selects the desired portion of the AED source distribution and then runs

a 360 IEBUPDAT job, specifying the corresponding tape file as input, as

well as the device, name, size, and format for the library he wishes to

create. Once the source library is created, members may be edited,

compiled, printed, punched into cards, or whatever is desired, using

the basic OS/360 utilities. Details of how to run such jobs are left to the

programmer at each installation, since they are common, well-documented

OS/360 jobs.

To make proper use of the tape, it is necessary for the programmer

to know the precise sequence and format of the tape contents, and the

following parag raphs discuss these details. Each tape file consists of a

sequence of IEBUPDAT "ADD cards" and source programs, where a

single ADD card precedes each program, and has the following format:

Columns 1,2

./

Columns 10-12

ADD

Columns 16-72

prog.name, 00,0,0

Columns 73-80

PPPNNNN3

-44-

Prog. name is the name of the program that follows the ADD card,

PPP is the program's identification number, NNNN is the card number

within the program, and i is used to indicate "Version 3". The.E.E.£.&.

names are ordered alphabetically, as required by IEBUPDAT. There

are no JCL cards on the tape, and the very first card is an ADD card for

the first program. The sequence field for each tape file is entirely numeric,

and is sequential, with the smallest number at the beginning and the

largest number at the end of the file. PPP program numbers begin with

program 001 and increase by 1 for each new program. NNNN card

numbers increase by 4 for each successive card, leaving room for 3

insertions between adjacent cards before card replacement is necessary.

PPP is reset to 001 at the beginning of each of the 10 files.

Because of the large bulk of information, it is desirable to keep

only one single source tape for both OS and CP/CMS operating systems.

The vast majority of programs are operating-system independent, and

any programs which are system dependent are identified by the letters

"CM" (for CP/CMS) or "OS" (for OS/360) at the end of the prog. name

parameter of the ADD card. For example, tape 1 contains programs

MCZNCM and MCZNOS (programs 63 and 64, file 8) for the CMS and

OS versions of macro pass source program MCZN. Future updates and

corrections to the tape will be made using the established numbering

scheme, so it is imperative that the sequence of data not be altered by

the tape recipients.

To be able to use the same tape on CP/CMS, a special program

named OSTOCMS is distributed as file 4 of tape 3 (described below).

This program may be used to read an IEBUPDA T tape in the format just

described, copying selected programs from selected files into the user's

CMS file directory. See the more complete description of OSTOCMS,

below.

Before proceeding to discussion of tape 2, a warning is in order.

Most programs may be compiled or assembled directly from the source

libraries generated from tape 1, without ever editing the programs or

punching them onto cards. However, certain precautions are in order.

Since AED-O, assembly language, AEDJR, and RWORD source programs

are mixed in all tape files except for files 2 and 3, wholesale 360 jobs

such as "compile all programs in AEDJR" should be careful to distinguish

-45-

between the various source languages. Also, most AED-O programs

contain one or more. INSERT statements, and require these inserted

files to be correctly identified in the JCL for each compilation. Lastly,

a few programs contain. FEAT. cards for the AED l'Features Feature'l,

and these programs are not directly compilable as distributed. In all

cases, unfeaturized versions for some of the more common setups are

also included on the tape, and immediately follow the featurized version

on the tape. Comment cards at the beginning of these files describe the

features included, and the prog. name mnemonics consist of the name

of the featurized version followed by the version number. For example,

the first three programs in the AEDJR Library are AJAA, AJAA1, and

AJAA2 for the featurized AJAA prog ram, plus two unfeaturized versions.

2. Tape 2: OS/360 Partitioned Data Sets

Tape 2 contains the OS modules and libraries required to run AED

on the 360 under OS. All modules are designed to work under PCP, MFT,

and MVT. A DOS version has not been considered, and users are warned

not to attempt to use AED under DOS.

The tape in the form of an "unloaded" disk pack (model 2311) uses

the 360 IEHMOVE utility program. That is, the contents of the disk pack

being used to run AED at MIT were written onto tape by IEHMOVE COpy

PDS commands, so that the reverse process of COpy PDS commands

from tape 2 to the user's disk will result in an identical copy of the MIT

disk contents. Actually, the IEHMOVE job can be instructed to copy the

files onto a wide variety of memory devices as dictated by the JCL state­

ments, but the remainder of this desc ription uses 2311 disk pack statistics,

since these numbers are most readily available and can be easily translated

into statistics for other devices.

Tape 2 consists of 8 files, as follows:

-46-

Each DSNAME given in the above table is preeeded by the characters

"USERFILE. M0846. 0123. LOAD. AED. II in order to comply with MIT's

catalogue name conventions. 2311 disks are recorded at 3625 bytes of

information per track, and 10 tracks per cylinder. All modules were

recorded with file parameters BLKSIZE = 3072 and RECFM = U.

To use the tape, the user runs an IEHMOVE job to copy the desired

tape files onto whatever direct access device he wishes except for the

Data Cell (2321), whose blocking factor does not permit a BLKSIZE of

3072. To use the resulting Partitioned Data Sets, he uses the proper

DSNAME and device in the DD card for his JOBLIB (to run the compiler,

the Macro Preprocessor, or AEDJR -- tape files 1,4, and 6) or for his

SYSLIB (to use one of the libraries).

In addition to the files contained on tape 2, certain other source

libraries are required to run AED, and thes e are generated from tape 1.

The specific source libraries required depend on the portion of AED that

is to be used. For example, to use the AED-l compiler, the assembler

macro library from file 4 of tape 1 must be available to assemble the

programs which are produced by the AED-l compiler. File 6 (. INSERT

files) will probably also be needed so that basic data structure definitions

may be manipulated by standard symbolic referents in source programs.

3. Ta:e.e 3: CMS Modules and Libraries

Tape 3 contains the MODULE, TXTLIB, and MACLIB files of the

CP/CMS version of AED. The tape is divided into four files:

-47-

File CMS* Tape
No. Namel Name2 Records Records Contents

AEDV3 MODULE 8

) AED-I Co=pile< Pm",

AEDPHl MODULE 133

AEDPH2 MODULE 79

AEDPH3 MODULE 117

AEDPH4 MODULE 29 866[36"bj"

AEDLIB3 MACLIB 44 Assembler Macro Library

AEDLIB3 TXTLIB 102 Basic Run-Time Library

AIOLIB3 TXTLIB 213 I/O Run-Time Library

TRCLIB3 TXTLIB 76 TRACE Debugging Library

FSPLIB3 TXTLIB 74 Fast Free Storage Library

2 AJRV3 MODULE
165 } 733

AEDJR (complete version)

AJRLIB3 TXTLIB 276 AEDJR Text Library

AJR TEXT 270 AEDJR Text Decks

3 AEDMACRO MODULE 186 187 AED-l Mac ro Pas s

4 OS TOCMS MODULE

I: }
102

OSTOCMS TEXT Read OS tape into CMS Directory.

OSTOCMS SYSIN 84

Tape 3 is recorded in CMS TAPE DUMP format. Therefore, by

attaching the tape and using the CMS TAPE commands (TAPE SKIP, TAPE

LOAD, TAPE SLOAD, etc.) the files listed above may be read into the

user's directory or into the installation's command directory. The user

may thus select whatever portion of AED he may wish to use, and if file

directory space is a problem, the needed files may be loaded from tape

each time they are needed.

The four files fall into the following categories: The AED-l Compiler

and its run-time support libraries, the AEDJR System, the AED-l Macro

Preprocessor, and the OSTOCMS utility. Use of the first three is described

in the related user documentation.

The OSTOCMS utility program (file four) permits the OS Source Tape

contents to be read selectively into the user's file directory. OSTOCMS

is designed to read from OS labeled or unlabeled tape in blocked or

unblocked format, with a maximum blocking factor of 14,400 bytes -per­

record. The tape is rewound when the OSTOCMS command is given, and

.'.','
Numbers are approximate. Actual files may be slightly larger.

-48-

the prog ram begins by reading the tape label and printing it on the

console, or by printing "unlabeled tape". The program is designed

to create a single file for each command issued, and to read the entire

amount specified, including all of the ADD cards in the file created.

The OS TOCMS command format is as follows:

OSTOCMS namel name 2 $ (options)

All arguments are optional, and if the command OS TOCMS with no

argument is given, the entire file is read into the user's directory. Namel

and name2 are the two names of the file to be created. The default values

for namel and name2 are OS and TAPE, respectively, so that if no file name

is given, a file named OS TAPE is created, and if one name is given, a

file named "name I TAPE" is created. The (options) arguments following

the "$" may be given in any order, and are as follows:

SKPn

TAPn

FROM = prog. name

TO = prog. name

SKPn tells OS TOCMS to skip n files before reading the tape. TAPn

tells OSTOCMS which tape to read from, where TAP2 is the default case,

and the tape unit numbers are those assigned at the local CMS installation.

FROM= prog. name determine where to start reading within the tape file,

where prog. name is the name appearing on the IEBUPDAT ADD card. If

no FROM = option is specified, OSTOCMS begins at the beginning of the

file. Similarly, TO= prog. name tells OSTOCMS where to stop reading,

and if the TO= option is omitted, reading continues to the end-of-file.

OSTOCMS includes the TO= program in the CMS file created so that, to

read a single program from a file, the same prog. name is used for the

FROM= and TO= arguments.

4. Tape 4: CMS Text Files

Tape 4 contains all of the Text (object) programs for the AED System,

and is written in the TAPE DUMP format of CMS. The tape contains the

following 7 files:

-49-

File Tape
No. Namel Name2 Records Contents

AJR TEXT 277 AEDJR System

2 LIB 1 TEXT} AED Library, Part 1

LIB2 TEXT
369

AED Library, Part 2

LIB303 TEXT AED Library, OS Dependent

LIB3CMS TEXT AED Library, CMS Dependent

3 AEDMACRO TEXT} Macro Pass, System Independent
313 Part

MACROOS TEXT Macro Pass, OS Dependent Part

MACROCMS TEXT Macro Pass, CMS Dependent Part

4 P1CMS TEXT AED-l Compiler, Pass I,
CMS Dependent

PlOS TEXT AED-I Compiler, Pass I,
OS Dependent

P123 TEXT AED-I Compiler, Progs.
628 Common to Passes 1,2,3

P12 TEXT AED-l Compiler, Progs.
Common to Passes 1,2

Pl TEXT AED-l Compiler, Pass 1

P2 TEXT AED-I Compiler, Pass 2

P3A TEXT AED-l Compiler, Pass 3, Part A

P3B TEXT AED-l Compiler, Pass 3, Part B

P4 TEXT AED-I Compiler, Pass 4, Alarm
Reporting

5 FSPLIB3 TEXT 75 "Fast Free"Package

6 TRACE TEXT 77 TRACE Debugging Package

7 SHOIT TEXT 66 SHOWIT AEDJR Example

Tape 4 contains all text files for the AED System, and is designed

for CP/CMS only. The text libraries contained on Tape 2 are sufficient

for compiler and AEDJR link-editing when creating new version of these

modules, so no additional OS text tape corresponding to Tape 4 is

necessary.

C. VERSION 3 BOOTSTRAPS TO OTHER COMPUTERS

Concurrent with the bootstrap of AED from the MIT 7094 time

sharing system to the IBM 360, work was in progress by other cooperating

groups to effect bootstraps to two other computers; the Univac 1108 and

the GE 645. Neither of these efforts, which are reported below, was

a primary responsibility of the MIT project, although as much

assistance was given as possible. A third effort to bootstrap AED to the

Digital Equipment Corporation PDP-10, was conducted entirely outside

the MIT project by Codon Computer Utilities.

-50-

1. Univac 1108

Subsequent to the participation of Mr. Robert Coe in the AED

Cooperative Program in 1965/66, the United Aircraft Corporation (UAC),

Hartford, Connecticut, took the lead in attempting to bootstrap AED to

the Univac 1108 computer. This resulted in several 1108 versions, cul­

minating in late 1968 with limited distribution by UAC of a Version 2

AED/II08 which ran under a modified EXEC2 operating system.

In June, 1968, the Univac Corporation established a direct interest

in 1108/AED, with a joint MIT/Univac goal of creating a new 1108 bootstrap

completely compatible with the Version 3 AED/360. Univac assigned

Mr. Richard Gluckstern to the AED Cooperative Program, and by the

end of his one-year term in June, 1969, which coincided with the ter­

mination of AED Project activity, Mr. Gluckstern had become well

acquainted with the bootstrap process, and had made substantial progress.

Also, the needed files and programs were made operational on the IBM

360, so that the 1108 work was no longer dependent on access to the MIT

7094 and could be done at Univac.

In February, 1970, Univac announced the availability of a new

Version 2 AED which operates under the standard EXEC2 operating

system (instead of the modified EXEC2 required by the UAC versions).

Work is continuing at Univac on a Version 3 AED/ll08 that will operate

under the EXEC8 operating system.

2. GE-645

Starting in the fall of 1968, an effort was started to bootstrap AED

to the Project MAC GE-645 computer under the Multics time-sharing

system. Since the Computer-Aided Design Project did not have the

resources (time and people) to carry out this work by itself in addition

to its 360 bootstrap work for its Air Force sponsor, a team of people

from Project MAC and other MIT projects was assembled to do the

bootstrap, with the assistance of key project personnel. Work pro­

ceeded rapidly, and by early 1969, a half-bootstrap to the 645 was

working on the 7094. This produces a 645 assembly code, which can

then be assembled and run on the 645.

-51-

By June, 1969, work was about 60-percent complete on a first-

phase full-bootstrap of Version 3 AED that would run entirely on the

GE 645, but would not take advantage of the Multics paging mechanisms

(a later second-phase effort was planned to produce a paged version).

These full-bootstraps to the GE 645 were not completed, however, because

of the time demands on the AED project staff members to complete

AED/360, their subsequent termination from MIT and a realignment of

Multics priorities. It is hoped that these bootstraps will again be taken

up when circumstances permit.

D. AED DOCUMENTATION

1. Documentation Problems

A valid criticism voiced by many " outside" users of field-trial versions

of AED systems over the past few years is that the documentation pro­

vided was not well organized, difficult to work with, and in some areas

incomplete. Because of the complexity of high-level computer languages

and systems, the preparation of the various levels of tutorial material

and user's manuals needed for both beginning and experienced programmers

is a major task, even after the language and system are stable and well

defined. Where the language and system are under a state of continual

change, as they are during a fast-paced development program such as

AED, extensive formal documentation of interim phases is next to

impossible, both because much of it would rapidly become obsolete (perhaps

before even being completed), and because the personnel qualified to

prepare the documentation are the same ones needed for the next stage

of development. Of course, the interim documentation issue would not

arise if the system were kept 11in house" until development were completed.

However, a most valuable aspect of a development program is the feedback

obtained from outside users of interim versions. Thus a paradox arises.

Early in the AED development program, the decision was made to

obtain as much feedback as possible by distribution of interim systems

and subsystems to interested outside groups, and we believe this decision

was correct. Every effort was made to provide accurate technical

descriptions, but for the reasons stated previously, these usually took

the form of rather specific memoranda, each describing a particular

-52-

new feature or system change. Thus the total system documentation,

known as the "AED User's Kit", took the form of a loose-leaf collection

of memoranda and "system flashes" that eventually totaled some 1000 pages.

This contained all the necessary information, but in an unorganized

manner which made it difficult document to work with, particularly for

those without day-to-day personal contact with the AED development

group. The perserverence shown by the many who did learn to use AED

primarily from this documentation spoke well of the interest in AED,

but it was clear that the chaotic state of the documentation was a deterrent

to wider use of AED. Thus a major documentation effort was mounted in

the fall of 1968, concurrent with the preparations for the Version 3 release.

2. The Final Documentation Effort

Recognizing that professional writing help was needed to complete

the task of documenting AED, a subcontract was let by the MIT

Computer-Aided Design Project to Cambridge Computer Associates,

Inc., of Cambridge, Massachusetts. The unstinting efforts of CCA

personnel, working closely with C. G. Feldmann, have transformed the

"AED User's Kit" into a two-part AED-O Programmer's Guide (Report

ESL-R-406), the table of contents of which is shown in Table II. The

Guide is designed as a user reference manual and as such, each chapter

discusses one aspect of the AED language or subroutine library in complete

detail. Part I is a complete desc ription of the AED- 0 language proper-­

including descriptions of several subroutine packages (e. g., optional

procedure call arguments) which extend the features of the language beyond

the syntactic forms derived from Algol-60 syntax. Part 2 presents

further subroutine packages useful as building blocks for general software

system contruction. Because the report is a reference document on the

use of AED, the above arrangement of material is not ideally suited to

learning the AED- 0 language, thus a tutorial document was also needed.

Working closely with D. T. Ross, CCA personnel also transformed

the edited transcripts of the first 12 lectures of his special MIT

graduate course "Software Engineering", given in the 1968 Spring Term,

into a companion report, Introduction to Software Engineering with the

AED-O Language (ESL-R-405), the table of contents of which is shown in

Table III. This report takes a tutorial approach to the description of

-53-

Table /I

Contents of Report ESL - R- 405, \I Introduction to

Software Engineering with the AEO-o Language"

2.4.1

2.4.2

2.4.3

2.4.4

CHAPTER 1

1.1

1.2

1.3

CHAPTER 2

2. 1

2.2

2.3

2.4

2.5

2.6

CHAPTER 3

3. 1

3.2

3.3

3.4

3.5

3.6

3.7

INTRODUCTION

Software Engineering

Introduction to Plex

Aims of the Book

ITEMS AND LEXICAL RULES

Introduction

Kinds of Lexical Rules

Character Classes and Regular-
Expression Vocabulary

Regular-Expression Items

Lexical Type IGNORE

Lexical Type !DENT

Lexical Type PUNCT

Item-Building Process and Use of
IGNORE Items

2.4.5 Numerical Lexical Types

Trigger-Terminator Items

2.5.1 Lexical Types COMMENT
and REMARK

2.5.2 Lexical'Types for Character­
String Data

Conclusion

BASIC DECLARATIONS AND STATEMENTS

Introduction

Program Structure

Symbols, Variables, Declarations, and Type

Assignment Statements

A 1gebraic Ope rators and Expres s ions

Labels, GOTO. and Switches

Input and Output Procedure Calls

3.7.1 On-LineMessages

3.7.2 Legal AED Pornography

3

8

10

10

1 1

12

12

14

14

15

15
l(,

J 7

18

19

20

21

21

21

21

23

23

25

26

27

28

-54-

Table II (cont'd)

CII.,\PTER J

3.8

3.9

CHAPTER 4

4. 1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

CHAPTER 5

5. 1

5.2

5.3

5.4

5.5

CHAPTER 6

6. 1

6.2

6.3

6.4

6.5

(CONT'D)

Nested Calls and Type Testing

Sample Program

BOO LEANS , CONDITIONALS, AND
PHRASE SUBSTITUTION

Introduction

Relational Operators and Boolean Variables

Boolean Expres s ions

The Simple Conditional

Phras e Substitution

BEGIN and END

The Alternative Conditional

Valued Statements and Nested Assignments

Phras e Substitution and Labels

Sample Programs: Calculations of Differences

PARSING

Introduction

Parsing

Examples of Parsing

Order of Evaluation of Expressions

Altering the Order of Evaluation

N -COMPONENT ELEMENTS: POINTERS
AND BEADS

Introduction

Basic Uses of Beads and POINTER Values

6.2.1 Independent Beads and
POINTER Variables

6.2.2 Linked Beads and POINTER
Components

6.2.3 Character-String Beads

Overview of AED-O Bead Programming

Component Declarations: Defining Bead Types

6.4. 1 COMPONENT Declaration

6.4.2 $=$ Declaration

6.4.3 PACK Declaration

FREZ and FRET: Allocating Storage
for Beads

28

29

30

30

31

32

33

33

36

37

39

41

43

48

48

48

49

52

53

55

55

61

62

62

67

68

74

75

75

77

78

6.6 Referent Notation: Reading and Storing Values
of Bead Components 79

8.4.2

8.4.3

8.4.4

CHAPTER 6

6.7

6.8

6.9

CHAPTER 7

7. 1

7.2

7.3

7.4

7.5

7.6

7.7

CHAPTER 8

8. 1

8.2

8.3

8.4

8.5

CHAPTER 9

9. 1

9.2

9.3

9.4
9.5

9.6

9.7

-55-

Table II (cont'd)

(CONT'D)

Sample Bead Program: Building an
Unordered List

Operations on Pointers

Basic Functions of the . C. Character­
String Package

SYSTEMA TIC DEVELOPMENT
OF A PROGRAM

Introduction

The Ordered-List Problem

Normal Case

Special Cases

Systematic Program Refinements

Eliminating Special Cases

Comments on Method

BEADS AND ARRAYS

Introduction

Array Declaration and Reference

Comparing Beads and Arrays

Array Version of Ordered-List Program

8.4.1 From Beads to Arrays: First
Arrav Version

"No-Next;" Array Version

Second' "No_Next" Array Version

Comparison of Bead and
Array Versions

Summary

BASIC FORMS OF AED PROCEDURES

Introduction

Blocks and Block Structure

Introduction to Procedures

Procedure Definition

Function Definition

Recurs ive Procedures

Valued Block"

8 t

85

86

89

89

89

91

93

95

98

101

104

104

104

105

108

108

) 1 f\

116

116

118

120

120

121

125

127

129

130

133

-56-

Table II (cont'd)

CHAPTER]0 EXTERNAL PROCEDURES 135

]o.]
] 0.2

] 0.3

10.4

10.5

Introduction

Separate Declaration and
Loading of Procedures

Examples of Local and External Procedures

Separate Declaration and Block Structure

A Note on FORTRAN Compatibility

135

135

137

139

140

CHAPTER 11 ADVANCED FEATURES OF PROCEDURES 142

11. 1

11.2

Introduction

Argument Transmission and LOC

11. 2.1. LOC Class 1: Compilation Values

11.2.2 LOC Class 2:
Pe rmanent1y Allocated Locations

142

142

144

144

148

152

152

154

157

11.2. 3 LOC C1as s 3:
Temporarily Allocated Locations 145

11.2.4 LOC Class 4": Program Points 146

11.2.5 LOC and Legal AED Pornography 146

11.2.6 Inverting LOC 147

Activating Procedures and Labels:
Procedure DOlT

Dynamic Loading with LDOIT and LDOITS

DOlT and State Beads

ISARG Procedures for Optional Arguments

ISARGs and Nested Procedures

11.3

11. 4

11. 5

11. 6

11.7

CHAPTER 12 FOR AND PRESET STATEMENTS 159

Introduction

FOR Statements

FOR Conditions

12.3.1 Simple Expressions

12.3.2 ''STEP UNTIL" Conditions

12.3.3 "STEP WHILE" Conditions

12.3.4 "WHILE" Conditions

Examples of FOR Statements

PRESET Statements

Simple PRESET Statements

PRESET Expressions

12. 1

12.2

12.3

12.4

12.5

12.6

12.7

12.7. 1

12.7.2

12.7.3

PRESET Types

PRESET Expressions Using
Arithmetic Operators

$/$. PRESET Expressions

159

159

160

160

161

163

163

164

165

165

166

166

167

167

CHAPTER 12

12.8

12.9

CHAPTER 13

13. 1

13.2

13.3

APPENDIX A

A.l

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

A.I0

A.ll

A.12

APPENDIX B

-57-

Table" (cont/d)

(CONT'D)

Storage of PRESET Values

Compound PRESET Statements

TOWARD A SOFTWARE TECHNOLOGY

Review

Optimal Plex Models

Software Engineering and
Software Technology

13.3.1 Modularity in Design and
Use of AED Language

13.3.2 Problem Modularity, Plex Factors,
and Integrated Packages

13.3.3 Software Technology

AUTOMATED DEVELOPMENT OF MAN­
MACHINE PROBLEM-SOLVING SYSTEMS

Introduction

An Experiment

Communication

Table-Driven General Processors

The AED Approach

R WORD and AEDJR

First-Pass Structure

Semantic Package

Precedence-Foll.ower Operators

Making a System

Summary

Bibliography

A. 12. I Selected AED Papers

A. 12.2 Collateral Reading

GIN AND GOUT

167

168

169

169

170

172

172

173

174

In

178

178

180

181

182

183

185

186

188

190

191

192

192

192

193

B.l

B.2

Use of

B. 1. 1

B. 1. 2

Use of

B. 2.1

B. 2. 2

B. 2. 3

GIN for 'On-Line Input

Message GIN Argwnents

Variable Name GIN Argwnents

GOUT for On-Line Output

Printing Numbers

Printing Text

Printin~' .' rrays

193

194

194

195

195

196

196

-58-

Table II (cont'd)

APPENDIX B (CONT'D)

B.3

B.4

B.5

B.6

APPENDIX C

B.2.4 CRET and NOCRET:
Line Construction

B. 2.5 Octal Output

INFILE Off-Line Input

OUTFILE Off-Line Output

Value-Checking Procedures

Alarm Messages

DESCRIPTION OF AED-O LANGUAGE
BY TYPE-TRANSFORMATION RULES

190

197

198

198

199

199

201

Introduction

Format of Type-Transformation Rules

Type - Transformation Rules

Indices to Type-Transformation Rules

C. 1

C.2

C.3

C.4

C. 4.1

C.4.2

Index of Type Names

Index of Operators

201

201

203

212

212

214

GENERAL INDEX 217

-59­

Table III
Contents of Report ESL-R-406, "AED-O Programmer's Guide"

CONTENTS - PART I

CHAPTER 1

1.1

1.2

1.3

1.4

INTRODUCTION

General Description.

Basic Language Elements

1. 2. 1 Vacabulary

1. 2.2 Identifiers

1.2.3 Data

Program Construction

Problem Modeling with AED

1

1

2

2

3

3

4

Functions

Recursive Procedures

Extensions to the Procedure Mechanism

PROGRAM STRUCTURE LANGUAGE 5

21

24

26

10

15

16

17

17

17

5

5

7

7

9

9

10

10

Multi-Entry Procedures

The DOlT Package

The ISARG Procedures (Optional
Argument Package)

Procedure Parmeterization and
GENCAL

2.8.1

2.8.2

2.8.4

2.8.3

Procedures

2. 3. 1 Procedure Definitions

2.3.2 The RETURN Mechanism

2.3.3 Nested Procedure Definitions

Procedure Mechanisms

2.4.1 Procedures with Arguments

2.4.2 Argumert Transmission and the LOC
Operator

Valued Blocks

Programs

Block Structure

2.5

2.6

2. 7

2.8

2.4

CHAPTER 2

2. 1

2. 2

2.3

CHAPTER 3

3.1

3.2

3.3

MACROS AND SYNONYMS

Introduction

Macro Preprocessing

3.2.1 Phases and Active Vocabulary

3.2.2 Macro Definition

3. 3. 3 Block Structure

3.3.4 Macro Call

3.3.5 Macro Expansion

Special Features

3.3.1 Quoting Phrases

3.3.2 Peelable Quotes

29

29

31

32

34

35

35

36

36

36

38

-60-

Table III (cont1d)

DATA STRUCTURE LANGUAGE

THE WORKING LANGUAGE

Introduction

Labels and GOTO

Switches

FOR Loops and DO

Nested FOR Statemel. ~s

FOR Statement Application

Introduction

Algebraic Expressions

Boolean Expressions

Conditional Expressions

Stacking Operators

Use of Stacks

Bit Manipulation

~ 40

40

42

43

43

45

49

49

51

52

56

56

56

59

60

62

63

65

6l

70

72

73

73

74

75

75

75

77

78

80

80

82

82

82

83

84

87

91

92

List Arguments

Conditional Macros

Execute Programs

3.7.1

3.7.2

3.7.3

Intr oduc tion

The Modeling Plex

N - Component Elements or Beads

Packed Components

Free Storage

Arrays

Extended Referents

LOC and Locations

Character Words

Equivalence and Alias

Remote Data Referents

4. 11. 1 EXTERNAL Data

4. 11. 2 COMMON Data

SEQUENCE CONTROL LANGUAGE

(CONTID)

3.3.3 Controlled Quotes

Synonyms

Concatenating Items

Preprocessor Description

3.6.1 Sequence of Operations

3.6.2 Examples

Macro Flexibility

3.4

3. 5

3.6

3. 7

CHAPTER 4

4. 1

4. 2

4. 3

4. 4

4. 5

4. 6
4. 7

4. 8

4. 9

4.10

4.11

CHAPTER 5

5.1

5.2

5.3

5.4

5.5

5.6

CHAPTER 6

6. 1

6.2

6.3

6.4

6. 5

6.6
6.7

CHAPTER 3

7.5. 5

7.5. 6

CHAPTER 7

7. 1

7.2

7.3

7.4

7.5

-61-

Tobi e III (cont'd)

INPUT-OUTPUT LANGUAGE

The ASEMBL Package

7.1. 1 General Description

7. 1. 2 ASEMBL State Variables

7. 1. 3 Procedure Calls

7. 1. 4 Example s

Free-Format Input-RWORD3

7.2. 1 File Specification

7.2. 2 The NXTITM Call

7.2. 3 RWORD Machines

7.2. 4 Procedure Machines

7.2. 5 Item Procedures -Switching Machines

7.2. 6 Reading Buffers (RB)

7.2. 7 NXTITM Generated Help Conditions

7.2. 8 Using RWORD to Specify Item Rules

7.2. 9 Obtaining RWORD Machines

7.2.10 NXTITM Service Procedures

Input-Output Buffer Control Package (IOBCP)

7.3. 1 File FGi'mat Specification

7.3. 2 Device Specifications

7.3. 3 Buffering

7.3. 4 Function Calls

7.3. 5 User Supplied Procedures

7.3. 6 Format Procedures

7.3. 7 IOBCP Device Interface

7.3. 8 System Independent Devices

7.3. 9 System Dependent Devices

7.3.10 CP-67/CMS Dependent Devices

7.3.11 05/360 Dependent Devices

Simple Input Output Facilities

The GIN and GOUT Facilities

7. 5. 1 Input Procedure GIN

7.5. 2 Output Procedure GOUT

7.5. 3 Off-Line Input-Output

7. 5. 4 Operation Under FIB (Foreground
Initiated Background)

Value Checking Procedures

Alarm Messages

93

93

93

93

95

109

112

113

117

117

118

120

122

124

126

129

130

133

135

140

143

144

153

160

164

168

171

177

183

187

191

191

195

198

199

199

200

-62-

Tobi e III (cont1d)

The PRESET Statement

Introduction

THE PRESET LANGUAGE

Multiple PRESET Statements

Presetting a Range

202

202

202

202

204

204

205

205

Pre set Expr e s sions

Assigning Partial-Word Values

Overflow Truncation

8.2. 1

8.2.2

8.2.3

8.3

8.4

CHAPTER 8

8.1

8. 2

PART II

CHAPTER 1

1.1

1.2

INTRODUCTION

Program Package Organization

Principles of Package Design

209

209

210

THE AED FREE STORAGE PACKAGE

Introduction

General Criteria

Zoning

Storage Accounting Strategies

Procedure Descriptions

The Help Facility

2.8.1 Procedure Called by User-Supplied
Help Procedures

2.8.2 Package Procedures

237

237

214

214

215

215

215

216

216

217

218

218

220

223

223

223

225

226

226

227

227

228

230

Notation Conventions

Establishment and Control of Zones

Individual Bead Procedures

Entire Zone Procedures

Beads of Arbitrary Size

Partitioned Storage

Efficient Handling of Standard Cases

Separation of User and System Domains

Efficient Large -Scale Operation

Control of Fragmentation of Space

2. 5.1

2.5.2

2.5.3

2.5.4

Error Handling and Debugging

2.6. 1 Error Procedure, FERR

2. 6. 2 Helping

Miscellaneous Procedures

2. 2. 1

2. 2. 2

2. 2. 3

2.2.4

2.2.5

2.2.6

2. 7

2.8

2.6

2.3

2.4

2. 5

CHAPTER 2

2. 1

2. 2

-63 -

Table III (cont'd)

CHAPTER 3

3. 1

3.2

DATA FORMAT CONVERSION
PROCEDURES

Intr oduc tion

Conve r s ion Func tions

~ 239

239

239

CHAPTER 4

4. 1

4.2

4.3

4.4

4.5

4.6

4. 7

4.8

APPENDIX A

A.l

A.2

A.3

APPENDIX B

THE GENERALIZED STRING PACKAGE

Introduction

Basic Elements

Mechanization -Independent Features

String Package Procedures

4.4.1 Control of the Generalized Procedures

4.4.2 String Manipulation Procedures

4.4.3 Bead Manipulation Procedures

4.4.4 Bead and String-Type Procedures

The Basic Functions

4. 5. 1 Links

4. 5. 2 Values

4. 5. 3 Structure

4. 5.4 Ordered Lists Example

4. 5. 5 Pushdown Stack Example

Typed Pointer s

4.6.1 Application of Typed Pointers

4.6.2 Constructing Typed Pointers

4.6.3 Testing Typed Pointers

Generalizing the Basic Functions

4.7,1 RGTC Using Typed Pointers

4.7.2 Use of Substrings

4.7.3 Values of Beads

4.7.4 Generalized Search

4.7.5 Generalized Copy

4.7.6 Multiple Ordered Lists

4.7.7 Substrings vs. Full Strings

Bead Structures for Multiple Strings

4.8.1 Extension of the Package

4. 8. 2 Families of Basic Functions

4. 8. 3 Bead Type Definition

DESCRIPTION OF AED-O LANGUAGE BY
TYPE-TRANSFORMATION RULES

Introduction

Type -Transformation Rules

Indice s to the Rule s

AED-O VOCABULARY WORDS

244

244

246

247

248

248

249

251

252

253

253

254

255

255

261

262

263

265

268

268

268

269

271

272

274

276

278

279

279

280

286

289

289

291

300

305

-64-

Table III (cont'd)

APPENDIX C AED-O NUMBER FORMATS ~ 308

APPENDIX D MACRO PREPROCESSOR STATE DIAGRAM 309

INDEX PART 1

INDEX - PAR T Z

313

318

-65-

most of the basic features of AED programming, and is recommended

as a starting point. Once the reader has basic familiarity with AED

methods, the more advanced topics treated only in this report can be

easily learned. Simpler aspects of each topic are treated first, so

the reader may use basic features without knowledge of full details.

Taken together, these two reports total over 550 pages, and constitute

the revised, greatly improved documentation for the Public AED Release.

All of the writing had been completed in draft form by the time of the

departure of the AED project staff from M.1. T. (following the Version 3

release in July, 1969) and about two-thirds of the material had been edited

and final-typed on galleys, using IBM Magnetic Tape Selective Typewriter

and Composer (MT/ST and MT/SC) equipment. However, much work

remained in editorial review and rewrite of remaining material by CCA,

proofreading of all material by both CCA and the authors, galley pasteup

and correction, preparation of indices, final typing of one-third of the

material, completion and checking of the large number of ,drawings, and

the printing process itself. Report ESL-R-405 was distributed on

December 23, 1970, and Report ESL-R-406 (AED-O Programmer's Guide)

on March 6, 197 O.

Other documents relating to the application of AED were also issued

during the reporting period. These will be discussed in subsequent

chapters in connection with the descriptions of this work.

CHAPTER IV

APPLICATION, LANGUAGE, AND COMPUTATION STUDIES

In addition to the main effort of the project in preparing for and

completing the AED/360 compiler bootstrap, other parallel AED efforts

were under way, particularly during the first of the two contract periods

covered by this report (l May 1967 to 31 November 1968, under Contract

F 33615 -67 -C -1530).

The AED compiler relies heavily upon the other AED tools -

the library of subroutine packages, and the AEDJR system for language

definition (us ed for the AED -0 language definition). During the report­

ing period, all of the subroutine packages and the AEDJR system were

compiled and checked out on the new compiler versions, and additions

and corrections were made to enhance their capabilities, as described

in Sections A and B. The final versions of these are included in the

Version 3 AED/360 release (see Chapter III).

Other efforts included the SHOWIT System (Section C), which is

a practical example of the application of the AED approach, and which

is included in the Version 3 release; the Syntax Definition Facility

(Section D); the Equilibrium Problem Solver (Section E); and a study of

graph models for parallel computation (Section F). Each of these latter

studies is covered in a separate published report, so they will only be

sununarized here.

Another AED application study (CADET) was only partially com­

pleted, and had to be set aside at the beginning of the second contract

period (l December 1968) because it was outside the agreed-upon tasks.

Since this work was not separately reported, it is covered in some

detail in Chapter V.

A. AEDJR REVISIONS

In addition to compiling the 84 programs in the AEDJR system

for the 360 through the new compiler versions and checking out the

result, the entire AEDJR system was reworked for machine independ­

ence. While in the process of reworking the AEDJR source programs,

-66-

-67-

som.e additions were also m.ade. Two new AEDJR com.m.ands, OPNFIL

and CLSFIL, were added to allow the user to write lengthy console

output onto a rem.ote file rather than the slower, on-line console.

Also, the program. which sets up the AEDJR "LIKE string" data struc­

ture was changed to place the elem.ents in the string in the order given

by the user in the AEDJR source program. rather than in the ascending­

core-location order used previously. This perm.its the USer to organ­

ize the LIKE statem.ents in the order that m.atches are m.ost likely to

occur, thus increasing proces sing tim.e efficiency during a run.

A parallel effort was also started to activate the AEDJR MARK

com.m.and on the 360 and 11 08, so that proces sed AEDJR vocabularies

m.ay be punched out as a deck of m.acro calls and then assem.bled into

binary form. for production runs of debugged, com.pleted vocabularies.

Up to the end of the reporting period such vocabularies (e. g., the

AED-O vocabulary) had been processed via MARK on the 7094, and

the resulting m.acro decks then assem.bled on the 360 or 1108. A

certain am.ount of reworking of the MARK program.s was necessary

to m.ake them. m.achine independent, and this proces s was started dur­

ing Novem.ber. While these revisions were being done, additional

flexibility was added to allow user specification of entry points in the

MARK deck, so that the AEDJR vocabulary table m.ay be referenced

at specific points by user program.s.

Work also continued on the AEDJR user's doc Ulllent, which was

elaborated by exam.ples.

B. SUBROUTINE PACKAGE EFFOR TS

In addition to the cons iderable efforts involved in correcting

bugs, updating the subroutines into the libraries, and com.piling and

re-com.piling the several hundred subroutines in the AED library,

m.any new subroutines and reworked versions of old subroutines

were written and checked out in a continuous effort to im.prove the

AED software systeITl tools. The rem.ainder of this section briefly

describes SOITle of these efforts.

The free Storage Package for dynaITlic storage allocation during

execution is one of the m.ost critical of the subroutine packages. It

underwent a new analysis and re-writing during the reporting period.

-68-

Many revisions were made in the Input-Output Buffer Control

Package (IOBCP) which is a vital link between AED and its machine

environment. Heavy usage on several different computers continu­

ally suggested changes, so that by the end of the reporting period, a

vastly better package was available.

The Delayed Merge Package (DMERGE) accepts data in an input

order and outputs the same data in a different, output order under

flexible user control. The package will be used in the next analysis

of the Compiler's Second Pass (AED-2 final compilation phase), and

may be used by anyone having a similar data-shuffling problem.

During the reporting period, DMERGE was converted and checked

out on the 360. Several machine-independent areas were reworked

during the conversion, and the revised DMERGE source files are

system and machine independent. Since DMERGE makes heavy use

of IOBCP (Input-Output Buffer Control Package), it afforded a real

test of IOBC P, and suggested some minor changes.

A SNAP package for OS/360 debugging was written, and debug­

ging was completed. The package permits selective run-time dumps.

A ". B." package to handle binary strings in a way similar to

character strings was written and de bugged. A memorandum was

written.

A simplified CPRINT package was written to print . C. strings

without using the full ASEMBL package.

A 360 version of the Alarm Package was compiled and debugged.

The new version further breaks down the checking and reporting

phases for greater flexibility.

C. THE SHOWIT SYSTEM: AN EXAMPLE OF THE USE OF
THE AED APPROACH

Since 1959 the M.1. T. Computer-Aided Design Project has been

engaged in a program to est a b 1 ish the techniques of implementing

man-machine systems for computer-aided design. From the begin­

ning it was recognized that Iidesign" is but a special term for some

ill-defined type of problem-solving; no distinctive features are re­

flected in a system for design versus a system for general problem­

solving. However, the field of man-machine problem-solving is much

-69-

too broad to permit a single system to be used for all applications.

Many systems are needed, each of which must

1. use the specialized jargon of its particular
field of application,

Z. require little or no knowledge of computer
programming to be us ed effectively,

3. be evolutionary to adapt to the changing
needs of its us ers, and

4. be created and maintained by the users them­
s elves or by skilled local staff who are in
intimate contact with the us ers.

For these reasons the Project's efforts have not been directed toward

a single computer-aided design system, but rather toward a system

for making systems. Actually, what has evolved is a "system of

systems for making systems ", with an orderly method for applying

it. This collection of concepts and working tools we refer to as the

(AED) Automated Engineering Design approach.

The SHOWIT System, which originated as an unscheduled demon­

stration of AED cpapbilities at the Second AED Technical Meeting in

January, 1967, is a tutorial example of the application of the AED ap­

proach, with particular emphasis on the facilities of the AEDJR pars­

ing processor for implementing new languages. The SHOWIT language

is a subset of the Iverson language, chosen at the time of the January,

1967 AED Meeting.

By using AEDJR as the framework for the new system, the pro­

grammer can implement quickly all the procedures and grammar

rules. In particular, the initial plateau of SHOWIT acts as a sub­

system of AEDJR. By means of three successive commands to

AED JR, the following events can be caus ed:

1. The grammar rules for the entire SHOWIT
language are read in and made active.

Z. A special set-up procedure, written by the
programmer, is invoked.

3. Any specific program, written in the
SHOWIT language, is executed.

-70-

The lexical processor for the SHOW IT SysteITl is a specially

constructed RWORD ITlachine. ':' Its iteITl-building rules conforITl to

the designer's specifications for the SHOWIT language. In particular,

the lexical phase identifies and discards COITlITlents written by a user

in his input ITles sage. The R WORD ITlachine is invoked - that is, a

request is ITlade for a new iteITl to be extracted froITl the input - by a

special procedure written by the prograITlITler to replace the standard

one provided in AEDJR. The prograITlITler1s procedure is its elf called

by the First-Pas s AlgorithITl each tiITle a new input iteITl is needed to

continue the parse. A second RWORD ITlachine is used in the SHOWIT

SysteITl to read in data values typed on-line by a us er. This ITlachine

accepts nUITleric iteITls written in integer, deciITlal, or E -type forITlat.

The SHOWIT SysteITl has been docUITlented in Technical MeITlo­

randUITl ESL-TM-394, by J. R. Ross and D. T. Ross, June, 1969,

and is included in the AED/360 systeITl release.

D. SYNTAX DEFINITION FACILITY (SDF)

One of the central topics in the cOITlputer science field since the

introduction of the Algol report in 1960 has been what can be called the

language definition probleITl. The probleITl is, siITlply, to find a "goo d II

ITlethod of defining or describing a cOITlputer prograITlITling language and

of producing a processor for it. Of course, there are probably as ITlany

ITleanings for "good II as there are us es or us ers of cOITlputer languages.

One use of a language definition is for people to read to learn the lan­

guage. In this cas e "good II will probably ITlean that the definition is

easily readable and understandable. Another siITlilar use would be as

a reference for a person who knows the language. Here "good" would

ITlean not only readable but also concise and cOITlplete. A third iITl­

portant us e of a language definition is as input to a cOITlputer prograITl

to produce a cOITlpiler for the language. For this use "goodll ITlight

-'--,-
A description of RWORD is given in Appendix B, which is a repro-
duction of a technical paper in the COITlITlunications of the ACM,
Vol. 11, No. 12, DeceITlber, 1968.

-71-

mean precise. Also, since the designer of the language must write

the definition, "good" to him implies "easy to write II.

lt is possible to produce several definitions of the same lan­

guage - one to serve each purpose - but, this has several disadvan­

tages. First, to produce several different definitions can be expensive,

sinc e it involves duplication of effort. A s ecmd and more serious

problem is that the definitions may not be precisely equivalent. For

example, the old method of compiler construction starts from a con­

cis e, Ilfor -people" desc ription of the language. The compiler is then

hand-coded from the original description. The chances that the hand­

coded compiler implements exactly the full intent of the original

des cription are very small.

The various requirements of a language definition system ­

readability, understandability, conciseness, completeness, precision­

are often conflicting. But, as mentioned above, it is undesirable to

have several definitions of the same language, so it is necessary to

find a good compromise. The problem is es s entially to develop a

practical system in which a programming language can be described

in a precise yet readable form which can be processed automatically

to produce a compiler for the language. To be practical, the system

must be convenient and economical to use. It must handle the types of

constructions usually found in programming languages, and it must

produce an efficient processor for the language.

The language definition problem was studied in a thesis research

by R. S. Eanes, res ulting in a s ys tern called the Syntax Definition

Facility (SDF). This is an interactive system which allows the de­

signer of a computer programming language to define the syntax of

his language in a relatively simple natural meta -language. From this

syntax definition a set of tables for driving a general parsing algorithm.

are produced. If the system detects possible ambiguities or inconsist­

encies in the definition supplied by the language designer, it will report

them and try to indicate the source of the problem. The system in­

cludes test and debugging facilities to aid the language designer.

The SDF meta-language allows the language designer to specify

the syntax of his language by writing a series of sample statements

which are marked to indicate how they should be pars ed. Each sample

-72-

statement specifies the "kind of value II or semantic type of a construc­

tion in the language. By the underlying principle of phas e substitution,

which allows any construction to be substituted for any other construc­

tion of the same semantic type, the small number of sample statements

induces a complete language definition allowing statements of arbitrary

size and complexity. A syntax definition in the SDF meta-language is

somewhat similar to a Backus -Naur Form or context-free grammar

definition, but it is more readable and easier to produce. The algo­

rithm us ed by the system to produce a parser from the meta -language

description is a synthesis of the precedence techniques and the AED

Language definition systems.

The thesis has been issued as Report ESL-R-397, "An Inter­

active Syntax Definition Facility," R. S. Eanes, September, 1969.

E. EQUILIBRIUM PROBLEM SOLVER (EPS)

"Equilibriwn Problem Solver" is an expression suggested by the

fact that a mathematical phys ics, boundary value problems generally

arise when continuwn models are employed in the analysis of physical

systems at equilibrium, such as temperature distributions in struc­

tures, air flow through orifices, etc. The EPS system is a computer

program with an input language especially tailored to these types of

applications. Specifically, when the development of EPS first began

in the fall of 1964, it was intended that EPS solve two-dimensional

boundary-value problems for linear elliptic systems of second -order

partial differential equations, and it was hoped that users would be

able to obtain solutions to particular problems by supplying only essen­

tial information describing governing equations, boundary geometry,

and boundary conditions.

In a sense, EPS has both overshot and fallen short of its original

goals. It has overshot these goals insofar as it is able today to treat

a class of problems which is much broader than, although not so rigor­

ously definable as, the class for which it was initially intended. On the

other hand, EPS is not the "fully automatic, nwnerical assistant" once

envisioned. With the benefit of hindsight, it is possible to say that both

of these results were inevitable. The class of problems which EPS was

-73-

meant to solve is itself broad enough to indicate the use of numerical

methods which, for maximum flexibility, are best implemented in a

semiautomatic form. Thus, in particular, it is nec es s ary in EPS for

the us er to define a disc rete model for this problem, in the form of a

finite-difference lattice, in addition to the various parameters which

are mathematically es s ential. At the same time, however, the many

variables left open by the class of problems for which EPS was in­

tended necessitated certain general-purpose, algebraic capabilities

which make pos sible many important extensions. F or example, it is

pos sible to have EPS compute revis ed problem or lattice parameters

using results from previous solutions. Cons equently, iterative proce­

dures can be effected which permit the treatment of boundary-value

problems with nonlinearities, free surfaces, or undefined parameters.

Further, the general-purpose feature of the system can be exploited

in an independent manner, and enable the user to specify and have

executed algorithms which have nothing to do with the solution of

boundary-value problerns

When E PS was started in 1964, AED was not sufficiently

developed to make it attractive for use as the programming language

for what was thought to be a short-term thesis res earch program.

Thus the first version of E PS, completed in 1966, was not programmed

in AED. During the reporting period, EPS was completely repro­

grammed in AED for the 7094 tirne-shared cornputer at M. 1. T., and

now exists in two forrns - a typewriter version, and a version which

uses graphical input-output on the ESL Display Console. A movie

demonstrating E PS was completed (except for a sound track), and a

us erls manual was completed and published as a joint report with

Project MAC, which provided a considerable share of the support for

the EPS work. The user's guide, which will be an appendix of a forth­

coming doctoral thesis is:

Report MAC-TR-6Z/ESL-R-395, "EPS: An Interactive
System for solving Elliptic Boundary-Value Problems
with Facilities for Data Manipulation and General­
Purpos e Cornputationll

C. C. Tillman, Jr. June, 1969

-74-

F. GRAPH MODEL FOR PARALLEL COMPUTATIONS

Present computers operate on a s erial basis; that is, parts of a

problem are worked on one at a time in a predetermined order by a

single arithmetic unit. Since further major advances in circuit speed

seem unlikely, there is great interest in computer configurations

which permit parallel processing; i. e., simultaneous processing of

different parts of a problem by multiple arithmetic units. One of the

major difficulties in such proces sors, however, is that of structuring

a computational proces s so that interdependencies between various

computational steps (such as the requirement that the output of one

step be the input of another) can be properly handled.

This problem was studied in a doctoral thesis research by

J. E. Rodriguez, completed in September, 1967. The thesis has been

published as a joint ESL/Project MAC report, "A Graph Model for

Parallel Computation," Report ESL-R-398/MAC-TR-64, J. E.

Rodriguez, September, 1969. The results of this study are best sum­

marized by the abstract, reproduced below:

"This thesis presents a computational model called
program graphs which make possible a precise descrip­
tion of parallel computations of arbitrary complexity on
nonstructured data. In the model, the computation steps
are represented by the nodes of a directed graph whose
links represent the elements of storage and transmission
of data and/or control information. The activation of the
computation represented by a node depends only on the
control information res iding in each of the links incident
into and out of the node. At any given time any number
of nodes may be active, and there are no assumptions
in the model regarding either the length of time re­
quired to perform the computation repres ented by a
node or the length of time required to transmit data or
control information from one node to another. Data de­
pendent decisions are incorporated in the model in a
novel way which makes a sharp distinction between the
local sequencing requirements arising from the data
dependency of the computation steps and the global se­
quencing requirements determined by the logical struc­
ture of the algorithm.

The concept of the state of a program graph is
introduced and it is proved that every program graph
represents a deterministic computation, i. e. , that the
final state of each computation started from the same

-75-

initial state is unique. COInputations which do not
terIllinate properly are defined in terIllS of the concept
of hang-up state. Methods of analysis are developed
and necessary and sufficient conditions for the absence
of hang-up states are obtained. These conditions are
interpreted in terIllS of the structure of the graph and
the Illanner in which the decision eleIllents are iIllbedded
in that structure. Finally, an equivalence probleIll for
prograIll graphs is forIllulated and a solution to this
probleIll is pres ented."

CHAPTER V

DA T A MODELING (CADET)

A. INTRODUCTION

The priITlary goal of the COITlputer-Aided Design ExperiITlental

Translator (CADET) portion of the cOITlputer-aided design effort was

to achieve an over-all systeITlatic ITlodel of the ITlan-ITlachine probleITl­

solving proces s. ':' In working toward this goal, ITlany of the packages

developed in other parts of the Project (e. g., AEDJR, Free Storage,

String Package, BCORE) were utilized, as well as a nUITlber of new

techniques and packages developed specifically for this purpose.

This chapter describes the progress that was ITlade in developing a

new technique in data ITlodeling for the CADET prograITls.

One of the iITlportant probleITl areas in cOITlputer-aided design

is that of ITlaking a ITlodel to represent the object or systeITl being

designed. By ITlodel we ITlean a nUITlerically encoded syInbolic

representation stored in the cOITlputer ITleITlory. The ITlodel ITlust

contain all pertinent data as well as all the us eful relationships be­

tween various data. "Good II ITlechanizations for this inforITlation will

allow for efficient processing of the ITlodel (growth, ITlodification,

analys is) and will not be wasteful of this cOITlputer storage by ITlaking

unnecessary duplication of identical or siITlilar eleITlents of the ITlodel.

Plex theory';";' provides a general approach to ITlodeling and gives

ITluch of the strategy of data ITlodeling. For exaITlple, plex theory

shows how to set up a s eITlantic package to perforITl the priITlary

operations for growth and analysis of the data ITlodel, and also how to

des ign a search function called a "ITlOUS e" which locates the data

Investigations in COITlputer-Aided Design for NUITlerically Controlled
Production, InteriITl Report IR 8-236-VI, 1 June - 30 NoveITlber 1966,
p. 29.

;:::=;:::=

Investigations in COITlputer-Aided Design for NUITlerically Controlled
Production, Final Report for the period 1 DeceITlber 1959 - 3 May
1967, ReportAFML-TR-68-206 (M.LT. Report ESL-FR-35l),
Chapter III.

-76-

-77 -

stored in the model, as required input for the primary operations.

However, there is no "cookbook" for resolving the tactical question

of how to mechanize the data model, the semantic package, and the

various mous e functions. One us eful set of tools for the system

programmer is the facilities of the Generalized String Package,

but although the basic techniques of the String Package are appro­

priate, there are insufficient s ide constraints in their us e to be of

much tactical assistance. The following sections describe efforts

to encompass more of the total modeling problem in a single

cohesive scheme, to give a still higher level of approach than the

Generalized String Package provides.

B. DESCRIPTION OF POLYFACE

To study the tactical problems of modeling, it was necessary

to have an application area which may be studied in detail. The area

chos en was "Polyface", which was first pres ented to the attendees of

the Second AED Technical Meeting in January, 1967 as an example

of the utilization of the String Package for semantic package design.

Polyface is concerned with modeling "objects" composed of polygonal

faces joined along their edges. Thus Polyface us es only very simple

geometry, and the modeling requirements are almost purely struc­

tural. We expected that, becaus e of this structural purity, most of

the techniques derived for the polyface example would carryover to

more general modeling contexts. Eventually, of cours e, we intended

to apply our techniques to some "real life" design applications.

We chos e to model objects constructed from planar faces whose

boundary edges are straight lines. For the remainder of this discus­

sion' the word object always refers to such a construct. The set

of programs written to generate and modify objects compos ed of thes e

polygonal surface elements is called Polyface, or the "Polyface

Package." Four useful structure-changing operatibns are shown in

Fig. 12, and they have been programmed along with their four inverse

operations.

The objects formed by thes e operations are modeled using rings

of pointers to associate together the various face, edge, and point

beads which make up the entire object. An example is diagrammed

ORIGINAL STRUCTURE (s)

-78-

OPERATION RESULTANT STRUCTURE

TI E face C to face B

along E1 and E2

VANISH face B into

face A across edge E1

ZIPPER edge E1 and

edge E2 together

/
P2

SHRINK point P1 to P2

along edge E1

Fig. 12 Polyface Operations

in Fig. 13. Notice that there are rings which associate faces with their

boundary edges, and als 0 rings which as sociate points with the edges

they bound. Objects are modeled as a bead with a name component,

entered in a symbol table. Each object bead has a pointer to one of the

face, edge, or point beads in the topological structure. This then

serves as the entry position for a mouse function which can follow the

ring pointers in some sequence while it calls an action function. We

have studied the following types of mouse functions:

1) Spiral Mouse - follows face -edge rings beginning at a
given entry position. In running a large structure,
the sequence of faces lie on ever expanding curves
about the entry position, hence the name "spiral",

PI

-79-

P4

P2

(a) Two-faced abi ect with named el ements

P4

P2

(b) Ring model of obi ect (a)

P3

LEGEND

(a) GENERAL RINGS AND BEADS

O Ring of
Pointers

(b) PARTICULAR BEADS

c$
Edge named El

W
Face named T

~
Point named P3

Fig. 13 A Polyface Model (Topological)

2) SCAN. RING - starts at any bead on a given ring and
goes around the ring once,

3) Boundary Mouse - goes from the entry position
to the boundary of the object - then makes a
circuit of the boundary edges and points,

4) Steerable Mouse - the direction of its next step is
controlled by the function it calls.

In the work which was completed, only mouse functions 1) and 2)

were us ed for plotting a picture repres enting the object, and for per­

forming the eight polyface operations (i. e., TIE---) respectively.

-80-

1. The Initial Po1yface Program

In the original Polyface program the method used to carry out

the various operations cons is ted of three phas es:

1) Temporarily attach new beads specifying the
changes to be made to the topological structure
of the object(s) being changed.

2) Send a mouse around each of the above objects,
carrying a copy function which makes an entire
new copy, incorporating all the changes so indicated.

3) Destroy the original objects if desired.

This technique, although exemplifying a straightforward application of

Plex Theory, has two disadvantages when considered as a potential

data modeling tactic. The first disadvantage is that much computer

time must be us ed in making duplicate copies of large structures,

where only a few localized changes must be made to carry out the

Polyface operation. The second disadvantage is that either the pre­

vious structures are lost in step 3) or large amounts of storage are

required to contain all intermediate structures during the design

proces s. The seriousness of this disadvantage is seen when one real­

izes that the designer would like the security of being able to "back Upll

to a previous state if his latest trial is not successful. He would also

like the flexibility of being able to try several designs and then choos e

the best. A technique for eliminating these disadvantages is described

next.

C. COMMON SUB-EXPRESSIONING

1. Call Mechanisms

The most widely us ed technique permitting compact storage of

redundant information is bas ed upon the subroutine definition and call

mechanism. This technique may take many forms, but always includes

the concept of supplying a single master definition incorporating

s elected changeable parts indicated by dummy arguments. Specific

instances of this generic definition are then obtained, with desired

modifications, by means of a call with specific argument values. The

body of the subroutine definition is not actually copied (as in the formal

-81-

definition of an ALGOL 60 procedure) but rather is directly referenced

as in nlost nlechanizations of a subroutine call (e. g., FORTRAN).

The concept is equally applicable to a call on a structural body of data

s erving as a cOnlputational nlodel. Thus a single generic nlodel of an

object can yield any nUnlber of instances by calling the data body a

sufficient nUnlber of tinles.

Although quite effective, especially since the specific inlplenlen­

tation of the call nlechanisnl nlay take nlany fornls, this concept suffers

fronl the defect that the changeable parts (argUnlents) nlust be known

beforehand and are rigidly fixed at the tinle of definition. A nluch

closer nlatch to the needs of a creative user of a systenl would result

if one were able to say (regarding either progranls or objects) that a

new object shall be just like the object or objects cOnlposing it except

for a nUnlber of arbitrary variations not previously specified. In this

way all COnlnlon portions of the data structures nlodeling the objects

would be shared, and the user has cOnlplete freedonl to alter any fea­

ture on the spot.

Such a sharing schenle has been devised for Polyface, yielding a

nlodel fronl which any of the desired variants can be extracted by a

nlouse function. By a sequence of operations, we fornl one all- inclusive

data structure which nlodels sinlultaneously all objects created by

those operations. To select a specific object, (i. e., nlake a call on

that object), we tell a nlouse we want object <j>. The nlouse then runs

through the structure and reports back all of the beads that are con-

s istent with the <j> as sUnlption. In effect, the call nlechanisrn occurs

not in one place, but is spread out into the structure in the fornl of

"variation beads" attached to each piece of data or structure in which

the object <j> differs fronl the nlaster objects in ternlS of which it is

defined. New objects are given new nanles. called object codes which

are cOnlbined with previous object codes to fornl variation codes.

Variation codes identify the variation beads which were created to

fornl the new object.

In order to proc es s this data structure, a nlOUS e carrying an

action function is given the obj ect nanle, say <j>, and an appropriate

starting position. The nlouse tests each new bead it COnles to to find

-82-

if a <I> variation exis ts. 1£ so, it is us ed. 1£ not, the ITlaste r (i. e. ,

no variation) is used. As newer objects are created, which ITlay in­

volve variations of previous variations, a stack of object codes show­

ing the nesting of sub-objects within a given object is generated. An

exaITlple is the "trestle" shown in Fig. 14. The ITlaster triangle T

was TIE1d to a call on its elf, T c ' forITling object <I> 1. A call on <I> 1,

called <1>1 was then TIE'd to <1>1 itself, forITling object <1>2. Varia-
c

tions of particular ITlaster triangle beads are labeled <1>2- <1>1 -T ,
c c

<l>2-<I>l-T ,etc. depending upon the sequence of construction operations
c

/\/S/=
TRESTLE

<PIc

Fig. 14 Nested Polyface Structure Showing the Construction Sequence

which created the trestle. Each feature of the cOITlplete trestle has an

appropriate variation code and thus ITlay be extracted by the ITlOUS e.

2. Mous e AlgorithITl

Variation codes provide a unique static naITling scheITle for both

ITlaster and variation beads in the data structure. As a ITlouse follows

various pointers through the data structure, it crosses and recrosses

the virtual boundaries of the nested structure indicated in Fig. 14.

The general position of the ITlouse within these boundaries is given by

a collection of code characters which show the nesting of sub-objects.

Such a collection of sub-object codes is generated by the ITlouse as it

ITloves about the object, and is called the context code of the ITlouse.

A context code includes a cOITlplete des cription of the ITlOUS e's

position within the particular object <I> through which the ITlouse is

running. The ITlouse uses its context code at each step to locate the

"best" variation bead. The best variation ITlay have a variation code

-83-

the sanle size':' as the context code, indicating that it was created when

<p was constructed. If no nlatching variation code of the sanle size is

found, then the best variation bead is the longest one which is shorter

than the context code and nlatches the lar gest nUnlber of the low-order

characters of the context code. Such a bead was created for a sub­

object of <P at an earlier tinle, and its code was not changed by later

operations which led to the creation of <p. Variation beads whose vari­

ation codes are longer than the context code belong to objects of which

<p is a sub-portion. Thus they are ignored by the nlouse.

3. Bette rEne oding s

As the previous sections indicated, both variation codes and

context codes are collections of sub-object codes. This "stack" fornl

of identifying the variation beads would require considerable storage

at one sub-object code per nlenlory word. Packing several codes per

word would reduce the storage, but would also require the nlouse to

use nluch processing tinle to unpack the codes as it searches for the

best nlatch. Even with one code per word, the nlouse would perfornl

a separate cOnlparison of each code in the bead with each code of the

context code stack. Therefore SOnle sophistication in the nlechaniza­

tion of codes is appropriate. Indeed, the only restrictions on the

coding schenle which constrain the nlechanization are: 1) the variation

codes nlust be unique, i. e., a given bead nlust not have nlore than one

variation with a particular variation code, for otherwise the nlouse

cannot deternline which variation to use, 2) the variation code of a

bead nlust "include" the variation code of its parent. This is necessary

to show the genealogy or nesting of sub-objects upon which the concept

of "best" depends. (It also provides an efficient tree searching algo­

rithnl.)

We have devised several ways of using a single binary string to

encode stacks of "object nanles." The use of a single binary string

reduces the storage space used and also pernlits several "object nanlesll

to be cOnlpared sinlultaneously, using full-word binary logic, thus

By size, we nlean the nUnlber of object code characters it contains.

-84-

reducing the proces sing tiITle for the search algorithITl. Thes e differ­

ent binary encodings have various other properties which ITlake theITl

attractive. For exaITlple, one called lithe B<j> Method" allows vari­

ation codes to be created initially and never be ITlodified as new

operations are perforITled; another called the "CALL Method" encodes

into the shortest binary strings, while the "LEVEL Method" is ITlost

closely related to the idealized stack viewpoint described above.

Which one will provide the ITlost useful is, as yet, undecided.

4. PrograITlITling Polyface Operations for COITlITlon Sub-Expressions

Variation encoding yields extreITle cOITlplexity of data structure,

and our initial atteITlpt at prograITlITling TIE led to a three -page orgy

of creating new beads, running around rings, and storing new pointer

values. As TIE is one of the siITlplest of the eight Polyface opera­

tions, future prospects s eeITled gloOITly. What was needed was a way

of generating the Polyface operations froITl a lower level set of

operations. One atteITlpt was to define a siITlpler and ITlore fundaITlental

structure, called Polypoint, in which the atoITlic objects are points, and

objects consist of sets of points. In this systeITl the operations are few

and uninteresting, but a new forITlation, called Polyline can evolve out

of Polypoint. Certain non-atoITlic objects of Polypoint are redefined to

be atoITlic lines in Polyline, and objects in Polyline are cOITlposed of

thes e lines. A siITlilar operation, with s OITle additional side conditions

then cOITlpletes the evolution of Polyface froITl Polyline. Although in

theory this two-stage evolution is possible, and this avenue ITlay be

pursued further in the future in its own right, the practical probleITls

of prograITlITling the successive reinterpretations of the object beads

for Polyface were forITlidable. For this reason a further alternate

approach was sought, which would be ITlore aITlenable to our present

knowledge of plex prograITlITling.

The approach finally chosen was to seek SOITle basic ring struc­

ture operations, which could then be us ed to prograITl the Polyface

operations. We hoped to accoITlplish this in the saITle way that the

Generalized String Package was intended to be used in the original pro­

graITlITling of Polyface. The priITlary difference is that the String

-85-

Package is concerned with operations on values with respect to

abstract strings, whereas the new package is specialized to

operations between pairs of rings. The same generalized imple­

mentation techniques (in terms of "basic functions" to des cribe

detailed behavior) are used, and since the rings are instances of

strings, the String Package functions can also be used, where

appropriate.

The basic ring functions which we chos e were designed to be a

complete set of transformations between the elementary linked ring

configurations as shown in Fig. 15. The basic ring functions are

given the mnemonic names MERGE, JOIN, and KNOT. Their inverse

single ring

2 separated rings

00
2 I inked rings

o edge bead

• point or face bead

Fig. 15 The Six Basic Ring Functions

functions are given the same name with a Irv" prefix. These ring

functions have enabled us to realize the goal of reasonable program

size for all of the Polyface Operations shown in Fig. 12.

D. SUMMARY

Res earch on the new Polyface Package for the modeling aspect

of CADET has uncovered some new techniques which have general ap­

plication within the framework of Plex theory. The system which was

being programmed at the time work was terminated had the following

characteristics:

-86-

1) The rrlOdel is fully "common sub-expres sioned", i. e. ,
each distinct entity occurs only once in the system no
matter how often it may be used.

2) The system keeps track of incremental changes
only, by means of "variation beads", so that there
is no redundancy.

3) The complete history of generation of a model is
recoverable from the model.

4) Not only the structure of the total model (which may
represent several alternate designs) is available,
but also any substructure is uniquely isolatable at
any time.

5) Generalized mous e algorithms have been devis ed
which leave no "tracks" in the data structure of the
model. That is, the complete state of the mous e
is contained within itself so that any number of
mice may be running simultaneously over the same
model without interference.

6) The encoding of variations so that a mouse knows
which of many variations to obey is done in a very
compact binary code which uniquely identifies the
precise location of a bead in the structure of the
entire model.

Notice that making a variation <Py of an object <p cannot change

the appearance of other objects <p. constructed from instances (calls)
I

of <p prior to the creation of <Py • This follows from characteristics

3) and 4) above, for if <p. had been changed, the original form of
I

thes e previous objects would have been lost, and we would be unable

to model the entire history of the design sequence, or to isolate the <po
I

substructure as they existed before <Py was created.

In the final work on CADET under the contract, Polyface pro­

grams were partially debugged with a simple scaled display of polygons

as a test vehicle. In order to provide a more suitable demonstration of

the value of these techniques for the full CADET environment, it had

been planned to include four specialized changes:

1) Change from 2 -D to 3 -D coordinates.

2) Allow nonplanar faces, nonlinear edges.

-87-

3} Incorporate Coons' surface patches as
the face elenlents.

4} Elaborate the geonletrical input language, to yield
with the above a useful 3-D shape description facility.

B ecaus e of the ternlination of CADE T activity during the final phas e of

the AED/360 bootstrap, none of these changes were actually nlade.

The basic theory behind Polyface also is far fronl finished. A

generalized inlprovenlent would be to find a way to nlodify an object

definition such that all calls in a specialized context include the new

nlodifications, even though the calls thenls elves are generated previous

to the change. This could easily be done with ordinary subroutine calls

(nlerely by changing the definition) but then all calls would be effected,

and there would be no control of context. On the other hand, when

variations are used, the designer nlust reconstruct any objects which

are to incorporate the new version if a basic elenlent is changed. It

appears, however, that augnlentation of the basic Polyface operations

by new operations to "edit" variation trees would allow changes to be

nlade, with control over where thes e changes should apply. Care nlust

be taken to preserve the desirable properties of the present cOnlpact

variation code and nlouse logic in any inlplenlentation of this new schenle.

Another very difficult but potentially valuable task is to design a

"generalized COnlnlon Sub-Expression" package which would sinlplify

the incorporation of thes e techniques in a wide spectrunl of data nlodel­

ing applications. The process of selecting out the COnlnlon sub­

expression portions of the Polyface package could also provide a start

toward a "Generalized Ring " package sinlilar to the String package.

At pres ent thes e two portions of the Polyface package are too entwined

to be easily used as "Generalized" packages in other environnlents.

CHAPTER VI

COMPUTER GRAPHICS

The cOnlputer graphics efforts under Contracts F336l5-67-C1530

and F336l5-69-C-143l during the reporting period were conducted by

the ESL Display Group, which also received half of its support fronl

Project MAC at M.L T., which is funded by the Arnled Forces Research

Project Agency (AR PA) under Contract Nonr-4l 02(0 1). The following

sections describe progress and inlportant nlilestones during the report­

ing period in the cOnlputer buffering of the ESL Display Console con­

structed under previous contracts, in the developnlent of a new low-cost

graphic display (ARDS), and in graphics software for support of these

display systenls.

A. ESL DISPLAY CONSOLE

The ESL Display Console, which becanle operational in 1963, was

the first graphics display systenl to incorporate such features as hard­

ware rotation and scaling of displayed figures, features which have

since beconle available in several cOnlnlercial displays. Fronl 1963

to 1967, the ESL Display Console operated directly fronl a data channel

of the 7094 CTSS, utilizing the 7094 nlenlory for display buffering. The

display was cOnlpletely described in the final report for previous con­

tracts (Report AFML-TR-68-206), as well as plans for installation of

a DEC PDP-7 cOnlputer to take over the buffering chores fronl the 7094.

The PDP-7 buffer cOnlputer for the original ESL Display Console

becanle operational in S eptenlber, 1967, shortly after the start of the

reporting period. This greatly inlproved the perfornlance of the dis­

play, as well as cOnlpletely elinlinating the fornler problenl of the

display using an excessive anlount of 7094 cOnlputer tinle when it was

directly driven by the 7094.

During 1966, a second ESL Display Console had been acquired by

the M.L T. Infornlation Processing Center and operated briefly on a

channel basis fronl their 7094 C TSS (which was a twin to the Project

MAC CTSS). At the start of the reporting period, it was decided to

-88-

-89-

move this cons ole to the Electronic Systems Laboratory in Building

35, buffer it with a PDP-9 computer acquired by the ESL Computer­

Aided Design Project under the previous Contract AF -33(657)-10954,

and tie the PDP-9 to the Project MAC CTSS via a high-speed (50­

kilobit) telephone link. Becaus e the 7094 pos ses s ed no communica­

tions adapters for such data speeds, it was neces s ary to enter the

Project MAC 7094 through the PDP- 7, which already had channel-to­

channel communication with the 7094. The main purpos es of this

tie-in were to experiment with communication procedures for remote

buffered dis plays, and to provide a display capability in the Electronic

Systems Laboratory. However, the configuration was planned with

the future in mind. Since the PDP-7 and the PDP-9 would then be

equipped for telephone-line communication, both displays could later

be operated directly from MULTICS or the IPC 360-67 when these

central time-shared facilities became equipped with suitable high­

speed communication adapters.

The DEC Type 637 communications adapters for the PDP-7 and

PDP-9 computers were installed in August, 1968, and the PDP-9/ESL

Console interface was constructed and checked out. However, the

Type 303 Datas ets and connecting telephone line, which had been

ordered from the New England Telephone Company in January, 1968,

were not installed until May, 1969, seventeen months later~ (This

was due to the summer 1968 telephone strike and its aftermath.) As

a result, no effective trials of remote display operation could be con­

ducted under the contract, although much preparatory software work

was done.

B. ARDS LOW -COST STORAGE-TUBE DISPLAY

The computer buffered refreshed displays discussed in the pre­

ceding section provide a dynamic graphics capability needed for certain

types of problems, but the expens e of such equipment precludes wide­

spread installation. In order to provide the average time -sharing

system user with a graphic capability, a low-cost display device is

needed which can directly replace the existing teletype terminals.

Starting in 1965, the Display Group began developing a new type of dis­

play terminal called ARDS (~dvanced !3:emote Qisplay ~onsole) to

-90-

provide high-speed alphanumerics and full graphical (picture-drawing)

capability over an ordinary voice-grade telephone line.

By the start of the reporting period in May, 1967, the design and

construction of prototype electronics for use with a direct-view storage

tube were complete. The advantage of a direct-view storage tube for

this application is that no local refresh memory is required, the char­

acter line generators need operate only fast enough to keep up with the

incoming data on the telephone line, and more information can be dis­

played than on refreshed displays which are limited (by flicker con­

siderations) in the amount they can display in one refresh cycle. The

major remaining problem at the start of the present reporting period

was that available storage tubes (five-inch) lacked adequate screen

size and picture resolution. In August, 1967, however, a new storage­

tube monitor became available; the Tektronix Type 611. This new

tube has a screen size of 6-1/2 x 8-1/2 inches and has a stored spot

size of 0.008 mils. Incorporation of this new tube with the prototype

electronics immediately resulted in an outstanding alphanumeric and

graphical display capability. A rather complete report of the ARDS

developn~ent up to this point was given in Final Report AFML- TR -68­

206 for the previous contracts.

During the latter part of 1967, the prototype electronics were

further refined, including provisions for graphic input by means of an

electronic cursor controlled by a joy-stick. A number of projects

within M. 1. T. and several organizations outside M.1. T. immediately

became interested in acquiring ARDS, but the Project was unsucces sful

in interesting existing display manufacturers in taking on the design.

Thus in March, 1968, Mess rs. R. H. Stotz and T. B. Cheek, principals

in the development of the ARDS, left the Display Group and formed a

company':' to place the units on the market. Five units were ordered

by Project MAC and other M. 1. T. groups far connection to CTSS.

The first of these units was received in late June, 1968, and was

immediately prepared for a rather unusual long-distance demonstra­

tion in conjunction with the joint M.1. T . - Technical Univers ity of Berlin

.'.."
Computer Displays, Inc.

-91-

J oint Summer Conference "Computers in the University," July 22

through August 3. A 1 ,200-bit link was set up via a dial-up connection

from West Berlin to Frankfurt, Germany; ITT Datel Service from

Frankfurt to New York; and a dedicated AT and T line from New York

to the Project MAC computer. The ARDS was successfully operated

for several hours each day of the conference. Figure 16 shows the

table-top ARDS unit (center of the figure) in use at the Technical

University in Berlin, with closed-circuit TV for audience viewing.

Fig. 16 ARDS Display Operation in Berlin, Germany,
via Transatlantic Telephone Link

The 1200 bit-per -s econd trans atlantic telephone link to the Project

MAC 7094 com;mter at M.1. T. is shown on the blackboard in the back­

ground.

In January, 1969, the base price of the ARDS display was reduced

to $8,000 (previously it had been $12,000), and additional units were

ordered by various M.1. T. projects. Currently there are 19 ARDS in

us e at M. LT. , and about 100 others have been acquired by various

industrial, academic, and governmental organizations.

A paper l'Applying a Low-Cost Graphics Display" was presented

by J. E. Ward at the 1969 IEEE International Convention in New York,

March 24-27, 1969.

-92-

C. GRAPHIC SOFTWARE

1. Integration of the PD P-7 Buffer Computer

The initial prograrnming of the Display Interface System for the

buffered ESL Display Console was completed in September, 1967. The

PDP-7 buffer computer now stores the display file, maintains the pic­

ture on the console, performs the real-time computations as sociated

with control of the console hardware functions (rotation, translation,

etc.), and processes display interrupts (light pen, push button, etc.)

for users at two stations; functions which were previously performed

by the IBM 7094 CTSS supervisor. This freed approximately 2500

registers of core storage in the supervisor, and reduc ed the load on

CTSS for driving the display from the previous 3 to 20 percent to a

negligible level. Accounting routines were written for the PDP-7

which enabled us to measure the portion of the PDP-7 time employed

in maintaining the picture. It was found that only about 3 to 30 percent

of the PDP-71s time is used for this purpose, depending on how heavy

the real-time interaction is.

The 7094 programming packages for the ESL Display Console

(Kludge) were originally called KLULIB. With the new modifications

and additions made during the reporting period, the system has been

renamed GRAPHSYS. The facilities available to the user in the PDP-7

console routines are the s arne as in the former 7094 routines, and at

the GRAPHSYS (KLULIB) and A-core DSCOPE interfaces, the new

buffered display interface system looks to the user exactly like the

former unbuffered systenl. A complete description of the ESL Console,

PDP-7 buffer system, and GRAPHSYS has been published in a joint

ESL/Project MAC Report ESL-R-356/MAC-TR-56, "An Integrated

Hardware -Software System for Computer Graphics in Time Sharing,"

December, 1968. The following is a summary of the essential features

of the high-level programming interface provided by GRAPHSYS.

-93-

2. GRAPHSYS

GRAPHSYS is a set of procedures for programming interactive

display consoles on time-sharing systems. As noted above, the

system was originally written for the ESL Display Console connected

to a time -shared 7094, but the us er interface which it provides has

also been us ed for programming the ARDS storagE: tube units. The

following discussion pertains to the buffered refreshed-display situa­

tion (such as the ESL Console/PDP-7). The modifications for ARDS

use will be discussed in Section C-3.

Throughout this discussion, the part of the time-sharing Super­

visor and the executives of any satellite computers involved in running

the display units will be called the Display Controller, or Controller,

for short. The GRAPHSYS procedures, which provide a high-level

language for programming the display console, res ide in the liB -core 1\

(non-supervisor) part of the time-sharing system along with the user's

programs, and make calls on the Controller to effect the actions de-

s ired. This division of functions is shown in Fig. 17.

DISPLAY CONTROLLER

7094
B-Core

(User)

USER'S
PROGRAM

GRAPHSYS

r
7094

A-Core

(Supervisor)

Display Buffer
Computer

Fig. 17 Information Flow in Display System

-94-

The special problems associated with operating a display con­

sole in time-sharing, when the user has only intermittent access to

the computer, have determined the divis ion of tasks between GRAPHSYS

and the Display Contrdler. The Controller performs the real-time

functions: it stores the display file (an ordered sequence of display

commands) and outputs them to the display unit to maintain the picture;

it records attentions (real-time events such as pen "see") as messages

for the user in an attention queue; and it performs certain real-time

functions (e. g., rotation) as requested by the real-time instructions

created by GRAPHSYS in response to user calls.

The Controller provides a single memory area called the display

buffer for storing the display file, the attention queue, and the real­

time instructions. The allocation and organization of this buffer is

one of the tasks performed by GRAPHSYS. The user need only specify

the number of registers to be us ed for the attention buffer (which con­

tains the attention queue) and the real-time buffer (which contains the

real-time instructions). The remaining space stores the display file

proper, (and rotation matrix buffers, if the real-time rotation or

magnification functions are us ed).

Flexible means are provided by GRAPHSYS for creating and

editing a display file. Procedures for adding, removing, and replac­

ing console commands, as well as a "copy" function whereby identical

sets of commands may be reproduced within the display file, are

included in the package. An important feature is the ability to define

subroutine pictures or subpictures. Their definition is analogous to

the way computer program subroutines are defined, and each time a

display of a subpicture is desired, only a single command (the call

command) is added to the display file. No provision is pres ently

made for arguments to subpictures.

Each item added to the display file is assigned a name. All

communication between the user and the system about items then

takes place in terms of these names, the system automatically per­

forming the required transformations for communication with the

Display Controller. The names remain invariant even though the

commands which they represent may be moved in the display file.

-95-

Thus GRAPHSYS provides a form of automatic storage allocation for

the display file.

A set of procedures for adding standard picture parts to the dis­

play file is also provided. These include arcs of circles, lines, points,

set-points, rotation matrix commands, control commands (affecting

picture magnification, light pen sensitivity, etc.), and characters. A

set point differs from a point in that its position remains fixed during

rotations. A picture that is to be rotated consists of a single set point

followed by a series of connected inc remental vectors. A point is

merely a unit length vector, (one scope increment in the plus direction

followed by one in the negative direction so that the beam position is

unaltered). The command which controls parameters such as intensity,

sensitivity to the light pen, etc., is called a Set C command. The con­

trol command which increments the beam position directly, and is

unaffected by rotation is called a Set F command.

The various facilities of the Display Controller may be called

upon via GRAPHSYS. These include signing on and off with one or

two consoles, placing the user's program in "input wait" when an

attention is requested and there are none, reading the current values

of the pas sive inputs, and requesting operation of the available real­

time programs.

The GRAPHSYS procedures are written entirely in the AED-O

language, and use the AED -0 I'Free Storage II System to allocate

memory space dynamically for the B -core data structure. If the user

employs free storage to store his own data structures in llplex '1 form,

he may call the same free storage procedures, which are automatic­

ally loaded with GRAPHSYS. Since GRAPHSYS is written in AED-O,

it may be bootstrapped to other computers. Such a bootstrap to the

IBM 360 for use with ARDS displays was partially completed during

the reporting period, and is currently in process of being completed

by Project MAC.

-96-

3. GRAPHSYS for ARDS

The KLULIB programming system for the ESL Display Console

was first modified in mid-1967 to provide a compatible programming

interface to the ARDS, called ARDLIB. This package was revised and

extended in a Master's Thesis research, completed in September, 1968,

to add routines which allow the graphical input device (joy-stick, etc.)

to be used like a light pen, and routines for defining 11light buttons ".

Other software extensions include a display simulator package and pro­

visions for storing ARDS pictures as C TSS disk files.

Changes and additions to GRAPHSYS were under consideration

at the end of the reporting period, so that the programming interfaces

for ARDS and the ESL Console can be made as near identical as pos­

sible. Work was also underway on planning for a whole new Display

Interface System which would provide a single interface for the ARDS

and the ESL Console (and perhaps other graphic devices); reduce the

supervisor portion of the software to the bare minimum communica­

tions functions; and, in the case of the PDP-7/ESL Console, permit

users to write their own real-time display routines. The general

goal in this work is to make the whole graphics software system as

display-independent and machine-independent as possible. Toward

this end, ideas were being collected for a new user interface, and

attention was being given to the problems of moving the whole system

to new computers such as MULTICS and the 360-67.

A case-study example of the use of GRAPHSYS for programming

ARDS was given as an appendix to Report ESL-R -356 cited previously.

This example, using the drawing and editing of electrical circuits as

a vehicle, was later greatly expanded under Project MAC support to

illustrate more sophisticated aspects of interactive graphics program­

ming, and published by Project MAC as a separate report:

"Case Study in Interactive Graphics Programming:
A Circuit Drawing and Editing Program

For Use with a Storage-Tube Display Terminal"

by

J. W. Brackett, M. Hammer, D. E. Thornhill

Report MAC - TR -63, Project MAC, M.1. T.
October, 1969, 94 pp.

CHAPTER VII

INDUSTRY PARTICIPATION

Since many Project activities broke new ground and required

approaches quite different from those commonly us ed. a large amount

of Project effort went into the preparation of technical presentations

and documents describing the approach and the work. However.

through past experience in the launching of the APT Language and

System for programming of numerically-controlled machine tools.

we early became convinced that we could not rely upon ordinary doc­

umentation and reporting to promote effective transfer of results

into the application environment. Thus a more direct form of com­

munication called" The AED Cooperative Program!1 was devised, as

described in Section B.

In addition to the direct participation at M.1. T. by visiting

industrial programmers under the AED Cooperative Program, many

outside organizations received and worked with the several interim

AED system releases (described in Chapter II) on their own computer

facilities, and provided much valuable feedback. Usage of interim

releas es is detailed in Section C, and recipients of the final Version

3 AED/360 release since July, 1969 are given in Section D.

-97-

-98-

B. THE AED COOPERATIVE PROGRAM

Starting in early 1964, a nUlTIber of industrial organizations were

invited to participate directly in the work of the Project by assigning

experienced systelTI progralTIlTIers to one-year visiting staff positions

at M. 1. T., to learn about and participate in on-going activities. It was

felt that such cooperative liaison would be of value to both the individuals

and organizations who accepted the invitation, and also provide ilTIpor­

tant feedback frOlTI the intended application environlTIent to help insure

that the subsequent evolution of AED would be pertinent to the problelTIs

of industry. By active participation in the work itself, the industry

repres entative at M. 1. T. becalTIe s killed in the needed techniques being

developed for the AED SystelTI, and learned lTIany aspects which were

ilTIpoS sible to doculTIent at the tilTIe. FurtherlTIore, working progr aITIS

developed in the Project were released ilTIlTIediately so that additional

progralTIlTIers in the cOlTIpany plants could also gain experience with

the new techniques. Continual liaison was lTIaintained between the

M.L T. Project and cOlTIpany pers onnel by direct cOlTIlTIunication,

progres s reports, and technical doculTIentation: as well as lTIeetings

and visits.

Details of the first three years of the AED Cooperative ProgralTI,

in which 18 cOlTIpanies participated, have been presented in the previous

final report AFML-TR -68 -206. During the present reporting period,

there were ten visitors frolTI nine cOlTIpanies. The cOlTIplete participa­

tion over the five-year span of the AED Cooperative ProgralTI is shown

in Fig. 18, and totals 362 lTIan-lTIonths. Considering salaries and

relocation expens es, this repres ents a total investlTIent in AED by the

participating organizations of the order of $1,000,000 to $1,500,000.

COlTIplete nalTIes and affiliations of the AED visitors is shown

in Table IV.

C. RECIPIENTS OF INTERIM AED SYSTEMS (1964 - 1968)

Starting in 1964, the M.LT. COlTIputer-Aided Design Project

lTIade available lTIagnetic -tape copies of various interilTI-level AED

systelTIs to interested outside organizations. In each case, the recip­

ient first sent a blank lTIagnetic tape (or tapes) to M.L T., and the only

AED 1964 1965 1966 1967 1968 1969

VISITORS JF IMA IMJIJA~OIND JF IMA IMJIJ Also IND JF IMA ~J IJ A Iso ~D JF IMA ~JTJ A~O lND JFT;'~~lMJIJA Iso IND JF IMAIMJ

Boeing Co. 4/1 Bowe 7/3 I 3/15 Berger 3/15 5/1 Nagai 4/5

r"evron P esearch Porter

Dow Chemical Mills

Ford Motor Co. Johnson

Grumman 3/1 Spence 6/30

7/1 Baine s 4/16 .~~er 4/1 Barovich
4/1 Meyer

IBM 5 I 7 1 2/1 12/31

IIT 4/15 Wise 4/15

Lockheed 3/1 Kennedy 7/16

McDonnell 3/15 Jones 3/15

North American
3/1 Martyniak 7/16 9/16 Lynn 9/15

Aviation

Olivetti 3/15 Luccio 3/15

Sandia 3/1 Fox 2 19 7/15 Cil e 6/30 7/15 Lane 6/25

SDC 3/15 Ackley 3/15

Univac 7/15 La~son 7/30 6/17 Gluckste n 6/7

Univ. of Edinbur g 7/1 Oldfield, /28

United Aircraft 3/1 Coe 6/30

Raytheon I/I Wenger 1~/:.n 2/1 Doherty 1/3 I

Northrop 10/7 Zurnaciyan 12/1

Union Ca rbide 9/1 Bates 2715 .
Honeywell 4/22 McDowell 4/15

Fe rranti 3/~5 Cameron 5/~1

Fig. 18 AED Visiting Staff

I
~

~

I

-100-

Table IV

VISITING STAFF OF THE AED COOPERATIVE PROGRAM
(March 1, 1964 to June 30,1970)

Stephanie 1. Ackley

Donald Barovich

Frank Bates

Anton J. Berger

Charles W. Bower

Donald J. Cameron

Howa rd J. C ilke

Robert K. Coe

John T. Doherty

B. Thomas Fox

Richard B. Gluckstern

Leonard H. Haine s

Walter L. Johnson

JackH. Jones

James R. Kennedy

Richard O. Ladson

Fabrizio Luccio

Richard S. Lynn

James J. Martyniak

Robert J. McDowell

Richard A. Meyer

Arthur K. Mills

Arthur T. Nagai

John V. Oldfield

Jame s H. Porter

Henry W. Spence r

June L. Walker

Irwin Wenger

Richard B. Wise

Stephan Zurnaciyan

System Development Corporation

IBM Corporation

Union Carbide Corp.

The Boeing Company

The Boeing Company

Ferranti, Ltd., Scotland

Sandia Corporation

United Aircraft Corporation

Raytheon Manufacturing Co.

Sandia Corporation

Univac Div. of Sperry Rand Corp.

IBM Corporation

Ford Motor Company

McDonnell Aircraft Corporation

Lockheed-Georgia Company

Univac Div. of Sperry Rand Corp.

Olivetti

North American Aviation

North American Aviation

Minneapolis Honeywell EDP

IBM Corporation

The Dow Chemical Company

The Boeing Company

University of Edinburgh

Chevron Research Company

Grumman Aircraft Corporation

IBM Corporation

Raytheon Company

IIT Re search Institute

Northrup Corporation

-101-

expens e to the contract was for the computer fac ilities (off -line) re­

quired for copying.

The systems released by M. I. T. were in three different categor­

ies: IBM 7094 versions, OS/360 versions, and 360/67 (CP/CMS)

versions. The two 360 categories were either the Version 1 or Version

2 releases described in Chapter II. The OS/360 versions were for

batch computing, the CP/CMS versions for time sharing. A fourth

AED vers ion for Univac 1108 computers was releas ed by United Air­

craft Corp., Hartford, Connecticut.

Table V lists all recipients of thes e various interim AED versions.

Where more than one addres s is shown for a particular company, it

indicates a separate releas e to a company divis ion.

D. RECIPIENTS OF FINAL VERSION 3 AED/360 (1969 - 1970)

Version 3 AED/360 (described in Chapter III), was announced at

the Third AED Technical Meeting held at M.I.T. on July 15,1969,

shortly before termination of the development group to form SofTech,

Inc. Subsequently, arrangements were made for SofTech to provide

an at-cost copying service similar to that previously provided by

M.I.T. for previous versions. To date, 16 sets of tapes have been

distributed, as shown in Table VI.

-102-

TABLE V

RECIPIENTS OF INTERIM AED SYSTEM RELEASES
1964-1968

BOEING COMPANY
Seattle, Wash.

CHEVRON RESEARCH
Richmond, Calif.

GRUMMAN AIRCRAFT
Bethpage, L.1.

HUGHES AIRCRAFT
Culver City, Cal if.

liT RESEARCH INSTITUTE
Chicago, III.

IMPERIAL COLLEGE
London, England

BOEING COMPANY
Seattle, Wash.
Wichita, Kansas
New Orleans, La.

BELL HELICOPTER CORP.
Fort Worth, Texas

CHEVRON RESEARCH
Richmond, Calif.

GRUMMAN AIRCRAFT
Bethpage, L.1.

IBM FEDERAL SYSTEMS DIV.
Rockville, Md.

LITTON SYSTEMS INC.
Woodland Hills, Calif.

IBM 7094 VERSION

IBM CORP.
Marietta, Ga.
Poughkeepsie, N.Y.

LOCKHEED GEORGIA
Marietta, Ga.

McDONNELL DOUGLAS CORP.
Huntington Beach, Cal if.
St. Louis, Mo.

MOBIL OIL CORP.
New York, N.Y.

NORTH AMERICAN ROCKWELL
Downey, Cal if.
EI Segundo, Cal if.

OS;360 VERSION

MOBIL OIL COMPANY
New York, N.Y.

NORTH AMERICAN ROCKWELL
Downey, Cal if.

NORTHROP CORP.
Hawthorne, Calif.

PENN. STATE UNIVERSITY
University Park, Pa.

SANDERS ASSOCIATES
Nashua, N. H.

TRW SYSTEMS
Redondo Beach, Col if.

360!67 (CP!CMS) VERSION

N.V. PHILIPS G.
Eindhoven, Netherlands

SANDIA CORP.
Albuquerque, N. M.

UNION CARBIDE
Oak Ridge, Tenn.

UNITED AIRCRAFT
East Hartford, Conn.

U.S. NAVY DEPARTMENT
Washington, D.C.

UNITED AIRCRAFT CORP.
East Hartford, Conn.

U.S. NAVAL WEAPONS LAB.
Dahlgren, Va.

ABCOR, INC.
Cambridge, Mass.

IMPERIAL COLLEGE
London, England

N. V. PHILIPS G.
Eindhoven, Netherlands

UNIVERSITY COLLEGE
London, England

MASS. INST. OF TECHNOLOGY
Lincoln Laboratory
Urban Systems Laboratory

IBM CORP.
Cambridge Scientific Center

BOEING COMPANY
Seattle, Wash.

UNIVAC 1108 VERSION

NATIONAL ENGINEERING LABORATORIES
Glasgow, Scotland

COMPUTER SCIENCES CORP.
Huntsville, Ala.

JET PROPULSION LABORATORY
Sunnyvale, Calif.

UNITED AIRCRAFT CORP.
East Hartford, Conn.

UNIVAC
Cambridge, Mass.

-103-

TABLE VI

RECIPIENTS OF FINAL VERSION 3 AED/360 (1969-1970)

OS CP/67

BENDIX INDUSTRIAL CONTROLS
Detroit, Michigan

THE BOEING COMPANY
Seattle, Washington

BROWN UNIVERSITY
Center for Computer and Info. Sc i.,
Providence, Rhode Island

CODON COMPUTER UTILITIES
Waltham, Massachusetts

COMPUTER SOFTWARE SYSTEMS, INC.
Stamford, Connecticut

GRUMMAN AIRCRAFT ENG. CORP.
Bethpage, L.I., New York

liT RESEARCH INSTITUTE
Chicago, Illinois

INTERACTIVE DATA CORP.
Waltham, Massachusetts

IBM CAMBRIDGE SCIENTIFIC CENTER
Cambridge, Massachusetts

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massach usetts

NATIONAL SECURITY AGENCY
Ft. George C. Meade, Maryland

PENNSYLVANIA STATE UNIVERSITY
AE Computer Aided Design Lab.,
University Park, Pennsylvania

PHILIP HANKINS, INC.
Ar! ington, Massachusetts

PHILIPS RESEARCH LABS.
Eindhoven, Holland

U.s. NAVAL WEAPONS LABORATORY
Dahlgren, Virginia

WESTINGHOUSE ELECTRIC CORP.
Information Systems Division,
Pi ttsburgh, Pennsylvania

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

CHAPTER VIII

ABSTRACTS OF PROJECT PUBLICATIONS

The content of the various technical reports published since May,

1968, has been summarized and referenced in previous chapters. For

reference convenience, the report title s and abstracts are all listed

below in chronological order of publication.

Since this was a continuing effort, based on prior work going back

a number of years, two previous final reports summarizing the prior

work are also listed to provide a ready reference to prior reporting.

A. FINAL REPORTS FOR PREVIOUS CONTRACT PERIODS

1. Final Report 6873-FR-3, "Automatic Programming of Numerically

Controlled Machine Tools, " John E. Ward, January 15, 1960, 120 pp.

This report covers the three-year period of development work
on the APT System which preceded the start of active work on
computer-aided design in 1959. It documents the first discussions
of "computer aids to design", carried out as one task during the
final year of the APT work. It also contains reprints of Final
Reports 6873-FR-l and 6873-FR-2 on the development of numer­
ical control, thus serving as a reference to all N IC MIT work of the
Air Force under Contract AF-33(038)-24007 from February, 1951
through November 30, 1959.

2. Report AFML-TR-68-206 (ESL-FR-35l), "Investigations in

Computer-Aided De sign for Numerically Controlled Production, "

D. T. Ross and J. E. Ward, May 1968, 243 pp.

This report summarizes the activities of the M.1. T. Computer­
Aided Design Project from 1 December 1959 through 3 May 1967
in the development of a generalized "system of software systems"
for generating specialized problem-oriented man-machine problem­
solving systems using high-level language techniques and advanced
computer graphics. Known as the AED Approach (for Automated
Engineering Design) the Project results are applicable not only to
mechanical de sign, as an extension of earlier development of the
APT System for numerical control, but to arbitrary scientific,
engineering, management, and production system problems as
well. All results have been programmed using machine-independent
teclmiques in the Project's AED-O Language, based on Algol-60,
and are operational on several widely available computers.

-104-

-105-

Advanced techniques for verbal and graphical language and
generalized problem-modeling are based on the concept of a plex
which combines data, structure, and algorithmic aspects to pro­
vide complete and elegant representation of arbitrary problems.
Program developments are supported by hardware and software
innovations in computer graphics. Various design applications
and a general technique for three -dimensional shape de scription
complement and illustrate the general approach. The unique
AED Cooperative Program allows visiting staff from industry to
learn Project results while contributing to their further develop­
ment.

A complete bibliography of 274 references to Project docu­
ments, talks, and thesis reports is included.

B. TECHNICAL REPORTS FOR PRESENT REPORTING PERIOD

3. Report ESL-R-356 (MAC - TR -56), "An Integrated Hardware­

Software System for Computer-Graphics in Time-Sharing, II

D. E. Thornhill, R. H. Stotz, D. T. Ross, and J. E. Ward,

December 1968, 168 pp.

This report de scribe s the ESL Display Console and its
as sociated user-oriented software systems developed by the
M.1. T. Computer-Aided Design Project with Project MAC.
Console facilitie s include hardware projection of three­
dimensional line drawings, automatic light pen tracking, and a
flexible set of knob, switch, and push-button inputs. The con­
sole is attached to the Project MAC IBM 7094 Compatible Time­
Sharing System either directly or through a PDP-7 Computer.
Programs of the Display Controller software provide the real­
time actions essential to running the display, and communication
with the time- sharing supervisor. A companion graphics soft­
ware system (GRAPHSYS) provides a convenient, high-level,
and nearly display-independent interface between the user and
the Display Controller. GRAPHSYS procedure s allow the user
to work with element "picture parts" as well as "subpictures" to
which "names" are assigned for identification between user and
Controller programs. Software is written mostly in the machine­
independent AED-O Language of the Project and many of the
techniques described are applicable in other contexts.

4. Technical Memorandum ESL-TM-394, "The SHOWIT System: An

Example of the Use of the AED Approach, " J. R. Ross and

D. T. Ross, June 1969, 98 pp.

The AED approach is a collection of programming concepts
and working tools for use in creating specialized, problem­
solving systems. This report is a tutorial document discussing

-106-

an example of the application of the AED approach, with particular
emphasis on the facilities of the AEDJR parsing processor for
implementing new languages. The report is largely self-contained
and should be useful to both experienced and novice AED users.
The report is in two parts; Part One contains a summary of the
AED approach and the manner of using it in practical situations.
Part Two contains a detailed de scription of SHOWIT, the tutorial
example system. Listings of the SHOWIT program files, heavily
interspersed with comments, are included in the Appendix.

5. Report ESL-R-395 (MAC-TR-62), "EPS: An Interactive System

for Solving Elliptic Boundary-Value Problems with Facilitie s for

Data Manipulation and General-Purpose Computation -- USER'S

GUIDE, .1 C. C. Tillman, Jr., June 1969, 187 pp.

This appendix for the author's forthcoming thesis, "On-Line
Solution of Elliptic Boundary-Value Problems, II is a user's guide
for EPS. EPS solves two-dimensional boundary-value problems
for elliptic systems of second-order partial differential equations.
It also has general-purpose capabilities which permit the on-line
definition and execution or arbitrary numerical procedure s.

The guide is concerned primarily with the use of EPS for
solving elliptic boundary-value problems. Linear problems of
this type that have no complications s'~ch as free surface s or
undefined parameters can be solved on a one-pass basis. Non­
linearities and other complications can be accommodated by
iteration. Solutions are obtained by a finite -difference method
which permits the use of irregular lattices, hence the crowding
of node s in sens itive regions.

EPS operates on the IBM 7094 computer of the M.l. T. Com­
patible Time-Sharing System (CTSS), and exploits to an unusual
degree the potential for interactive problem solving that CTSS
affords. Input commands re semble statements in various alge­
braic compiler languages, and can be combined and abbreviated
by means of macros. Improper input and other error conditions
are handled so as to minimize user inconvenience. Common
syntax errors, for example, are corrected automatically by the
machine. Output is available in either numerical or graphical
form.

6. Report ESL-R -3 97, IIAn Interactive Syntax Definition Facility, "

R. S. Eanes, September 1969, (Also SM Thesis in Department

of Electrical Engineering, M. 1. T.), 69 pp.

The Syntax Definition Facility (SDF) is an interactive system
which allows the designer of a computer programming language
to define the syntax of his language in a relatively simple natural
meta-language. From this syntax definition a set of table s for
driving a general parsing algorithm are produced. If the system

-107-

detects pos sible ambiguities or inconsistencie s in the definition
supplied by the language designer, it will report them and try
to indicate the source of the problem. The system includes test
and debugging facilities to aid the language designer.

The SDF meta-language allows the language designer to
specify the syntax of his language by writing a se rie s of sample
statements which are marked to indicate how they should be
parsed. Each sample statement specifie s the "kind of value" or
semantic type of a construction in the language. By the under­
lying principle of phrase substitution, which allows any con­
struction to be substituted for any other construction of the same
semantic type, the small number of sample statements induces
a complete language definition allowing statements of arbitrary
size and complexity. A syntax definition in the SDF meta-language
is somewhat similar to a Backus -Naur Form or context-free
grammar definition, but it is more readable and easier to produce.

The algorithm used by the system to produce a parser from
the meta-language description is a synthesis of the precedence
techniques and the AED language definition systems.

7. Report ESL-R-398 (MAC-TR-64), "A Graph Model for Parallel

Computations, " J. E. Rodriguez, September 1969, (Also ScD

Thesis in Department of Electrical Engineering, M.1. T.), 130 pp.

This report pre sents a computational model called program
graphs which makes possible a precise description of parallel
computations .of arbitrary complexity on non- structured data. In
the model, the computation steps are repre sented by the node s of
a directed graph whose links repre sent the elements of storage
and transmission of data and/or control information. The acti­
vation of the computation represented by a node depends only on
the control information re siding in each of the links incident into
and out of the node. At any given time any number of nodes may
be active, and there are no assumptions in the model regarding
eithe r the length of time required to perform the computation
represented by a node or the length of time required to transmit
data or control information from one node to another. Data
dependent decisions are incorporated in the model in a novel way
which makes a sharp distinction between the local sequencing
requirements arising from the data dependency of the computation
steps and the global sequencing requirements determined by the
logical structure of the algorithm.

The concept of the state of a program graph is introduced and
it is proved that every program graph represents a deterministic
computation, i. e., that the final state of each computation started
from the same initial state is unique. Computations which do not
terminate properly are defined in terms of the concept of hang­
up state. Methods of analysis are developed and necessary and

-108-

sufficient conditions for the absence of hang-up states are obtained.
These conditions are interpreted in terms of the structure of the
graph and the manner in which the decision elements are imbedded
in that structure. Finally, an equivalence problem for program
graphs is formulated and a solution to this problem is pre sented.

8. Technical Report MAC-TR-63, "Case Study in Interactive Graphics

Programming: A Circuit Drawing and Editing Program for Use

With a Storage - Tube Display Terminal, " J. W. Brackett,

M. Hammer, and D. E. Thornhill, October 1969, 100 pp.

The concepts involved in building and manipulating a data
structure through graphical interaction are presented, using the
drawing and editing of electrical circuits as a vehicle. The circuit
drawing program was designed to operate on an ARDS storage­
tube display terminal attached to the M.l. T. Project MAC IBM
7094 Compatible Time -Sharing System. The graphics software
system (GRAPHSYS) developed by the M.l. T. Computer-Aided
De sign Project was used for dealing with all graphical input and
output, and the AED Language of the Project was used in pro­
gramming. AED System packages for building and manipulating
complex data structure s are de scribed and their use is illustrated
in detail. The report includes flow diagrams and complete listings
of the sample circuit drawing and editing system.

9. Report ESL-R -405, "Introduction to Software Engineering with

the AED-O Language, "D. T. Ross, October 1969, 241 pp.

This report is a tutorial exposition of the AED- 0 language
and of a software enginee ring discipline based upon its use. The
AED (Automated Engineering Design) System has been developed
over a ten-year period by the M.l. T. Computer-Aided De sign
Project, culminating in release of the Version 3 AED-l Compiler
and associated system-building systems for use on IBM 360-series
computers in both batch and time - sharing. Bootstraps to other
computers are in progress.

The AED-O language, based on ALGOL-60, is the present
language for the AED-l Compiler. The report de scribes a major
subset of the AED- 0 language and demonstrate s its use. A com­
panion report, the AED Programmer's Guide, specifically covers
the Version 3 release, and presents additional features of the
AED-O language.

(See Table II, page 53, for complete Table of Contents.)

10. Report ESL-R-406, "AED-O Programmer's Guide, " C. G. Feldmann,

D. T. Ross, and J. E. Rodriguez, January 1970, 336 pp.

The AED (Automated Engineering Design) System has been
developed over a 10-year period by the M.l. T. Computer-Aided

-109-

Design Project. This report is a user reference manual for the
AED-O language and the Version 3 AED-l compiler and associated
system building packages, as released in July, 1969 for use on
IBM 360- series computers in both batch-oriented and time - sharing
operating systems. Part 1 of the manual describes the AED-O
language proper, including descriptions of several subroutine
package s which extend the feature s of the language beyond the
forms derived from Algol-60 syntax. Part 2 describes additional
subroutine packages useful as building blocks for general software
construction.

The material is organized so that a given aspect of the AED-O
language or subroutine library is discussed in complete detail,
from basic to advanced features, in a separate chapter. A tutorial
approach to the AED-O language and its use is given in a companion
report, ESL-R-405, Introduction to Software Engineering with the
AED-O Language, and is recommended for collateral reading.

Bootstraps of AED to other computers were partially com­
pleted under the contract, and are being completed outside M.1. T.
This report will also serve as a user reference manual for these
versions.

(See Table III, page 60, for complete Table of Contents.)

APPENDIX A

AED QUESTIONNAIRE

Simultaneously with the 9 June 1969 announcement of the

Version 3 AED/360 release and the 15 July 1969 Third AED Tech­

nical Meeting, the following questionnaire was sent to all past

recipients of AED systems, with a requested return date of 27 June

1969. Results of the 54 questionnaires returned are summarized in

Chapter II (Section G).

The AED (Autonlated Engineering Design) programs and systems
have been reworked and re-bootstrapped during the present, terminal Air
Force contract with the M o I. T. Electronic Systems Laboratory to produce
fully releasable versions of the following programs for IBM System 360
computer s in both batch-proce ss ing and time - sharing environments:

1) The AED-l Compiler for the AED-O Language

2) The AEDJR System for language definition

3) The AED Library of system-building packages

This release, plus progress toward a fully compatible release for
the Univac 1108 will be described at the Third AED Technical Meeting to
be held at the M. I. T. Kresge Auditorium on Thursday, July IS, 1969.
Also to be discussed are new formal documentation which has been prepared
on the use of the AED Language and systems, AED applications, and
formation of a User's Group. In connection with preparations for this
meeting, it would be most helpful if you could take a few moments to
answer the following questions:

Name:

Company:

Address:

Position:

1.) Have you studied AED in your organization? Yes __ No __
If Yes, what do you think are the strongest and weakest features
of AED?

Strongest:

Weakest:

-110-

2.)

-111-

Has AED been used in your organization? Yes
If No, why not?

If Yes, which pre-release systems have been used?

No

7094 1108 Exec2 360 OS 360 CP/CMS

How many people have learned AED-O?

Engineers __ Programmers __ System Programmers __

How many projects have used AED?
(Question 6 requests brief descriptions.)

3.) AED has many areas of potential applicability. Please compare with
other programming languages for the following categories of use.

AED

FORTRAN

COBOL

PL/l

Re search
Investigations

General
Programming

System
Building

Assembly

Low 0 1 2 3 4 5 High 0 234 5 o 1 234 5

AED

FORTRAN

COBOL

PL/l

Computer
Graphics

Data Base and
Management

Systems
Other

Assembly

Low o 1 2 3 4 5 High o 1 234 5 o 1 2 345

4.) Various users of a system have different needs with respect to
system support. Please rate your interest in the following support
service s if you are using or planning to use AED:

Improved User Documentation

Sy stern Maintena nce

Training Courses

Direct Use Assistance

Low 0 1 2 3 4 5 High

-112-

5.) As suming that at least the first two of the items of support listed
in Question 4 w"re available, please indicate expected use of AED
in your future work. (Please make a mark for each year indicated.)

Research General System
Investigations Programming Building

1973

1972

1971

197 a
Present

Low a 2 4 5 High a 1 2 3 4 5 a 1 2 3 4 5

Data Base and Other
Con1putcr Managernent
Graphic s Systems

1973

1972

1971

197 a
Pre sent

Low a 2 3 4 5 High a 2 3 4 5 0 1 2 3 4 5

6.) Brief desc riptions of any projects for which AED has been used or
has been considered in your organization would be of value o We
would appreciate your attaching descriptions of such projects,
including the overall effectiveness of AED for each project.

APPENDIX B

(PAPER REPRINT)

Automatic Generation of Efficient Lexical Processors Using

Finite State Techniques

language and
items (lexical

WALTER L. JOHNSON, Ford Motor Company, Dearborn, Michigan
JAMES H. PORTEH,* Chevron Research Company, Richmond, California

STEPHANIE 1. ACKLEY, System Development Corporation, Santa Monica, California
DOUGLAS T. Ross, !Ifassachusetts Institute of Technology, Cambridge, Massachusetts

Introduction

The functioning of a compiler can be described in the
following four logically separable steps:

1. Read the characters of the source
assemble them into meaningful words or
analysis) ;

2. Group the "words" of the language into phrases
and sentences for anal~'sis (parsing);

3. Extract the meaning of the source language sentences
(modeling) ;

4. Produce the appropriate object code.
Indeed, if step 4 above is changed to read "Carr~' out

the solution to the problem posed by the source language"
and generalize "characters" to mean communication sig­
nal elements, our four steps no\y apply to computer solu­
tion of problems in general [1].

Step 4, in the general case, represents the algorithm
for the particular problem and as such is not amenable
to general solutions. In the case of compilers some work
has been done in this area [1, 6].

Step 3, the analysis of the parsed language, again is not
amenable to general solutions, although some work has
been done toward providing a general mechanism for
this analysis [3].

Step 2 is much more amenable to generalized solution.
Very general systems exist for producing special-purpose
processors for parsing language [2-5]. Such automatically
produced parsers are being used in compilers and other
computer problem-solving applications.

With some exceptions, lexical properties have been
assigned a very minor role in computer languages, and
lexical processing has been incorporated as an incidental

The work reported here was made possible through support and
sponsorship extended to the MIT Electronic Systems Labor~tory

by the Manufacturing Technology Laboratory, RTD, Wnght­
Patterson Air Force Base, under Contract F 33 615-67-C-1530,
MIT Project DSR 70429. The work was also supported (in part)
by Project MAC, an MIT Research Program sponsored by the
Advanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract 1"Onr-4102(01).
'Present address: Abcor, Inc., Cambridge, l\Iass.

The practical applicatian of the theary of finite-state autamata
ta automatically generate lexical pracessors is dealt with in
this tutorial article by the use of the AED RWORD system,
developed at M.I.T. as part of the AED-1 system. This system
accepts as input descriptions of the multicharacter items or of
words allowable in a language given in terms of a subset of
regula r expressions. The output of the system is a lexical proc­
essor which reads a string of characters and combines them
into the items as defined by the regular expressions. Each output
item is identified by a code number together with a pointer
to a block of storage containing the characters and character
count in the item.

The processors produced by the system are based on finite­
state machines. Each state of a "machine" corresponds to a
unique condition in the lexical processing of a character
string. At each state a character is read, and the machine
changes to a new state. At each transition appropriate ac­
tions are taken based on the particular character read.

The system has been in operation since 1966, and processors
generated have compared favorably in speed to carefully
hand-coded programs to accomplish the same task. Lexical
processors for AED-O and MAD are among the many which
have been produced.

The techniques employed are independent of the nature of
the items being evaluated. If the word "events" is substituted
for character string, these processors may be described as
generalized decision-making mechanisms based upon an or­
dered sequence of events. This allows the system to be used in
a range of applications outside the area of lexical processing.

However convenient these advantages may be, speed is the
most important consideration. In designing a system for auto­
matic generation of a lexical processor, the goal was a
processor which completely eliminated backup or rereading,
which was nearly as fast as hand-coded processors, which
would analyze the language and detect' errors, and which
would be convenient and easy to use.

KEY WORDS AND PHRASES: character string, compiler, finite-state automata,
finite-state machine, lexical processor, nondeterministic machine, parsing,
plex structure, regular expressions, sequential machine, syntactic analysis

CR CATEGORIES: 3.63,3.75,4.12,5.22,5.24,5.31

Volmne II / Number 12 / December, 1968 Communications of the ACI\I 805

-113-

-114-

TABLE 1. REGULAR EXPRESSION OPERATORS

USED IN RWORD INPUT

I'("[/II/ar C..fpo''''.';/(J1l Tallie J de:..wri!H-'s I ~I(~ operators whif'iJ (';tIl 1)(·

appl ied 10 illdividllal eharaeters or I\ser-defilled "f,ame",,· C'iass,'s
Silch as LETTEI: and DIGIT 10 forlll expressi(JIls deseribillg I he
etJlIlposilion rilles for items of a lexical Iype.

S.a lerminator which indicates the elld of the reg iliaI' eXjJfe"ion
alld of the ile", deseriplieJll,

If character classes are referred to, the individual
eharacters ill each class must also be speeified to thc
RWOHll system. Table II sholl's an cxttmple of HWOlW

input.

Output. The ontput of RWOlW is a table of informa­
tion wluch controls the operation of a system-supplied
run-time package of lexical processing procedures. The
combination of the table and procedures is the special
lexical processor lI'hich will itemize a character string in
the manner specified by the input to R WORD. The lexical
proeessor is activated from a compiler or other user

Operator ': .1/w 1l ing Example

I cOIl{';itellate AlB

i

U Jillioll
1

or
I AUB

IIOlle or more B/A"
of the preccd-
illg

Interpreidtion

A or B

I followed by A

A cOllcatellated
wilh B, ie, AB

B or BA 01' BAA

A concateHated
with B or C, i,e.
AB or AC

The item Iype
named "EXA:\1­
PLE" with inter­
nal code "1" is
defiued as A or B

B cOllcatenaled
with nOlle 01' more

A's, i.e, BAA or 13
or BAAA etc,

EXA:\1PLE
(I) = AU B $,

'I IA

is defined as

1he following
eharacter is
not to be
treated ,<8 an
operator

the Hsual A/(B U C)

phrase sepa-
ration

, 1I0llC or Hlore, BIA*2
bllt 1I0l ex-
('ccdillg II

()

"II

$, item-descrip-
t ion termina­
tor

item llame (ilem code) = regHI:u' e"pn'"sion $.

parl of Ihe S,l' nl acti('-;I Ilalysis pro!!:ranlS. TIl<'re are sume
good reasons 1'01' scpar:t1 ing; these fUIl<:1 iOlls huth logically
and programmatically [;"i].

1. A large purtion of compilcr lime is consullled in
lexical analysis, making it essential that this function he
as effieicnt (fa,';t) as]JOssihle. Conway [4J notes that in his
expcrience Irith a protolype compiler the input speed
diffcrcnce betllecn lexical analysis alone and lexical analy­
sis plus syntactic:tl lLllalysis mlS about 10 percent. Sepa­
rating out the lexical analysis allolls tlus problem to be
attacked more effcctively.

2. The development of effective languages' requires
attention to the lexical as well as the syntactic properties
of the languages. Separating; the tlYO functions promotcs
recognition of this fact, and allows the functions tu be
investigated indepcndent Iy.

3. Separation alllJlrs the development of systems for
automatic syntactic and lexical analysis.

The third point is particularl,v important, since the
existence of such systems allOlrs the lang;uage developer
or compiler writer to experiment with various lexical
and/or syntactic schemes withuut the hurden of the im­
mense programming times \rhich Imuld othenrise be
required.

Several such sl'stcms aln'ady ('xist for generation of
syntactic processors [l1J. In this paper a s.ntem is dis,
cussed for the generation of lexical pru('e.ssors lI'hich lI'as
developed at ~I.I.T. as part of the AED-l system [1],
while the three non-:\I.I.T. authors Irere representatives
of their respective cumpanies in the AED Cooperative
Program of t he ~ I.I.T. COllJputer-Aided Design Project,
in H.J66-67.

The R',,"ORU Sp;lL'1ll

As described in [1], the .\ED approach to the gellel':l­
tion of man/machine problem-solving systems involves
the use of several auxiliary systems to prepare processors
for the major phases of a final specialized system. The
system for producing lexical processors is referred to as
the RWORD (read tl word) s~·stcm. The system has the
following general properties:

I nput. The user specifies the lexical properties of his
language to the RWORD system by specifying the makeup
of the items (words) \yhich are allmmble in the language.
This is done by means of a limited subset of the language
of regular expressions [7, S] which is used to describe how
individual characters and/or character classes are com­
bined to form items. The format by which the user de­
scribes an item to ltWOlW is as follows:

NOTE. Parenthesee;J on the lelt of the e4ualsign (uJter the item name) enclOse the item
type code num\JPr to be lIsed by RWORD's output processor to identify the lexical
type of the item. The name of the "execute" procedure, if any. to he csllf"d by the
proces.<lOr on encountering this item type Inay 8161} be indudf"(l: EXAlfPLE fI,

ACTION) =

where
item name,·is 11 mnemollic IImDe for Ihe lexie",1 type of item beillg

described sHeh as INTE(;I.;H alld VAllI ABLE.
item rode -is fill illtpg'nr ll11mhef whi('h provides fl.n "internal code"

for the lexie'al Iype. It is IIsed 10 idelll ify the item type to pro­
grams whell an ilem is ellcolIlIl crcd in the inpllt stream,

~ULL uo character AI (B U NULL) AB or A

R06 Cnmmllni .."linns nf the ACM Volume II I Number 12 I December. 19611

-115-

system throu~h a call on one of t It(~ Jlr()(:edures in the
package called "~X.l'L\!". XX.IT.\! return,'i one item
on each call, setting the item code, and setting a pointer
to a block of storage \yords containing the internal coded
representation of the characters of the item, and a char­
acter count. Figure 4 depicts the constructiun of the
R WOlm system.

Bccause a large portion of compilation time i.'i usually
consumeu in lexical analysis, one of the prime considera­
tiuns in the design of the RWORD system \nlS the efficiency
of the lexical proce.'isOt's. Although it is impossible tu
separate out the effects uf different operating system en­
vironments, in limited tests to date, R WORD'S processors
have ('umpared favurabl,\' \I'ith carefull,\' hanu-coded
FAI' processors performing similar function,'i. On the
]13.\[70D-l a carefull~' hand-coued lexical processor using
highl,v speeializeu techniques for the A!~J)-O language
proce,ssed characters at a rate of SOOO characters pCI'

second. An H\Yolw-generateu processor u:-;ing an ex­
tremel~' fjpxible implementation accomplished the same
task at a 1"1(' of :3000 characters pel' second. Xew imple-

mentation leehni([ll<'.s \\hieh j'olal(' .sJl(,eial adion.s ami
thereby permit the high freql\eney "normal" aetion.s
to take place \\'ith minimized overhead are expected to
signifieantl,\' redllee this difference while still m:\intaining
the generality anu case-of-lise of the overall scheme.

Conlext Uependenee

.\Iany cumputer lan~ua~es require conlext-uepemlent
lexical processing, a simple example being the special
treatment aceorucd characters \\ithin remarks or com­
ments.

Context dependenec is handled in H \VOIm by construct­
ing a separate processor for each context situation and
swikhing betlleen thcse processors when the appropriate
characters 01' items arc encountered. This is accompli,shcd
using t he "execute" functions u('scribcd belm\'.

Nonlexical Functions

The R\\'ORD system abo all()\\s the user to .specify as
input names of "execute" procedures \\hich arc to be
called by the processor \\'henever certain items or char­
acter classes are encountered. This is done by including the

L\.Bl,E II. EX\..\IPLE OF RWOIID b;PCT

.11eaning Class descriptions .1IC'lllilig

BE(;I:\ The first input line must be
BEGI:\

LET ~ ,,\IH 'I lEF(;lIIJKL:\I:\OI'QRSTU\,WX1'Z/
The dass LET "ouRi"ts "I' all
the letters. The first nonblank
character after the equal sigu is
treated as a delimiter.

81':\1(1) = LET/(LET U DIG) "5S,
The item t,'pe to be identified
b\" the itenl code "1 ~1 is to
e~1l5ist of :l character of the
das:" "LET" (letter) f"llu\\'ed
b,- zerll-tu-five characters of
tile clas:"e" "LET" Or "DIG"
I.digiti.

Jm: ~ 1~:H5li7S!)O/

SP,-\.CE = / /

I);TEGEH(2) DIG/DIG"S, The item type "r c",ie numhcr
"2 ll is to consist of one-Ol'-Illore
characters of the class "DIG".

IG~Ol{E = SU, 15, 16, 17,32,35, 3G, 37, 52, 55, 5G, 57,72, 75, 7GS
When a class is named
"IG:-<ORE" the resulting pro­
cessor "reads uver" all char­
acters of that class when
processing the input string.
The characters are defined by
the internal coded representa­
tion of characters on the
machine being used. Each
character is separated by a
comma.

./DIG/DIG"S,
Item type "3" is to be a dot
followed b,' one-or-more DIG's.

PUN = 11..,,+-=0$/11..

END

REc:IN

When the dollar sign ($) is
used as a delimiter RWOHD
treats what follows as two-digit
BCD codes for the characters.

Here "A" acts as the delimiter.

Class clescripti"ns terminate
with ENll

The fi,'st input line TIlust he
BEGIN

FRACTIOK (3)

1GNOHE SPACE S,

RE:\IAHK(4,SWITCHI)

PUNCTUi) = PU:-< $,

END FINJ

[{WORD allO\"" designation of
ignorable items in the manuel'
shown. Here space, being an
item in itself, will act as a
delimiter, but will not be "re­
ported" as an item by the pro­
cessor.

./ ./.S,
Itcm 4 is three dots. The pro­
cedurc SW ITCliI will bc called
by t he processor wllenever i tcm
4 is encountercd, The procedure
SWITCIII, is "alIed beforc the
item is reported by the proces­
sor.

Item 5 is any charactp,r of the
dass PU:".

The itCIll de:"\(,l'iptillIlS tf'rmi­
nate with E:\() FI);I.

Volume II / Number 12 / J)ecelllbcr. 19611 Cnllllllunicaliol1!"oo nf the ·\(:\1 807

- 116-

1"'O('('durc 1I:l1l1(' ,dOllg lIitlt Ill(' particular ilelll de~eription

or eharacter ela~~ ueoniption. Tlte u~er himself writes
these proeedures to match ~tand:mlized eallillg contexts
of the package routines and loads them with the table
awl the run-time package. The resulting processor then
stops at the designated spots in reading the character
stream and ralls the user-supplied program. An execute
program may s,,,itch lexical processing schemes, may
trigger the next level of language analysis (as in interpre­
tive systems when a statement terminator is encount­
ered), or may perform any other function that the nature
of the application dictate~.

Simple Languages

Although RWORD can handle very eomplex lexical
prohlem~, there exists a large and useful subset of lexical
schL'mes (which we call "simple languages") which can be
handleLI by a simpler processing mechanism than that
requireu in the general case. Simple languages are ones
in which, upon reading each character, the processor can
determine unambiguously if that rharaeter starts a new
item or if it should bc included :lS part of the same item
as the previoll" character.

FORTHA\" 1\' illustrates a complex l:tnguage. Consider
the follo\\'illg character st rings:

:!.EQI\:
21-:10

11elll structure

:2 .Eq. I';:
2 ElO

Xumba oj items

3
1

in IIhiell tlte charaetcr ~trillg; AB eould he g;rou{Jed as
"A" and "B" or ".\.B", both of which satisfy the same
definition. HWOIW makes a processor which takes the
longest item in such cases, and proceeds without reporting
the situation.

2. Reports the ambiguity, makes a decision, and pro­
ceeds. Certain ambiguities have less clear-cut resolutions
than the above, but RWORD makes an educated guess as
to the user's intention and proceeds. Example: The
characters X123 could be grouped as the variable name X
followed by the integer 123 or as the variable name X123.
Since t\\'O separate definitions are involved, R WORD
reports a possible ambiguity, elects to make a processor
,,,hich will make the longest item in such cases, and
proceeds.

3. Reports the ambiguity as "fatal" and quits. These
arc cases where no reasonable resolution of the ambiguity
is available. Such situations can only arise in "complex"
languages.

From the input described in Table II, RWORD would
produce a processor ,,,hich would itemize a character
string in the manner indicated and would call the user­
\\Titten execute procedure "S\VITCH1" ,,,hen item "4"
(...) was encountered.

The purpose of this procedure "'ould be to switch to a
processing scheme appropriate for handling remarks. In
AED-O "remarks" are comments within a statement and
are delineated by" "and "I I" or "S,". The remark

item definitions

Class descriptions

END FIN!

END

A "$" or a "/" by themselves
do not end the remark,

All characters of the class
"ALLBUT" are to act as ig­
norable delimiter.

IGNORE = ALLBUT $,

NOEND(l) = $ U '/$,

TERMIN(3, SWITCH2) = $;', U '//'/$,
A "$," or "//" will result in a
call on SWITCH2.

NOTW,. The 8poetrophe is used in item definition NOEND and TERMli'J" eo that
character:! / and. will not be treated 8.9 operators in the description language.

BEGIN

TABLE III. RWORD INPUT

ALLBUT = $01, 02, 03, 04, 05, 06, 07, 10, 11, 12, 13, 14, 15, 16, 17,
20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36,
37,40,41,42,43,44,45,46,47,50,51,52,54,55,56,
57,60,62,63,64,65.66,67,70,71,72,73,74,75,76,
77$ All characters but "$" (53) and

"/" (61) are in the class
ALLBUT.

BEGIN

A simple proces"or does not alloll' these two strings, since
it is necessary to re:ld pa~t 1he "E" before the disposition
of the "." can he de1L'nnined. A nonsimple processor must
cope \\'ith this type of look-ahead. A simple pl'ocessor
makes a decision before it reads t he next character.

The H'''OHD system detects complexities in languages
and gives the uscI' the most efficient processor his descrip­
tion allows. The user also has the option of treating his
inherently complex language "ith a "simple" processor,
in which case the processor always elects to add a new
character to the previous item when it may. This choice
has been found to satisfy the intent of most languages
,,,hich have been tried to date. In the example above, it
would correspond to the convention that the first string
must have a space if an alarm is to be avoided. This seems
to be a generally acceptable kind of convention since it
also improves the readability of programs.

Ambiguous Languages

Frequently, sets of item descriptions input to RWORD
allow a given character string to be itemized in more
than one way. Such languages arc said to be ambiguous.
Ambiguities are often very difficult to detect from in­
spection of the regular expressions describing the items.
RWORD detects all such ambiguities and takes one of
three actions.

1. Makes a decision resolving the ambiguity, and pro­
ceeds. This is done in such cases as a FORTRAN variable
name (one-to-six letters or digits, starting with a letter)

808 Communications of the ACI\J Volume 11 / Number 12 / December, 1968

-117-

•

processor should read all the characters of the remark and
switch back (by a call to execute procedure SWITCH2)
to the normal processing procedure upun encountering a
"$," or "/ /". The RWORD input in Table III would
produce the desired result.

In actual practice the two processors are combined at
an intermediate stage by RWORD, and the user would end
up with one lexical processor which would incorporate
both processing schemes.

Processor Functioning

f' The RWORD system is of considerable interest in its
own right, since it directly applies a portion of the abstract
theory of computing machines in an entirely different
field. The general approach used in R WORD is based on the
theory of finite-state automata or sequential machines.
Finite automata are machines having only a finite number
of internal states that can be used for memory and compu­
tation (as opposed to Turing machines). The specialized
lexical processors which R WORD produces are computer
plex1 structures which function as finite-state machines.
At any point in the reading of the input character string
this "machine" will be in some unique state. Upon read­
ing the next character the machine will change to a new
state as dictated by the particular character rcac!' Ob­
viously, a machine which does nothing but read char­
acters and change states is not of much value. However,
these machines provide the structure upon which the
actual processors are built. As an example of a finite-state
machine, the lexical language defined by the regular
expressions

BEG I!';'
S(l) = BIAS,
S(2) = AS,
S(3) = AICS,
END FINI

would result in a three-state finite-state "machine,"
represented by Figure 1.

The circles or nodes are the states and the arrows are
the transitions. Each state represents a unique condition­
of-tension in reading the character string, and all such
legal possible conditions are represented. At each state
the machine reads a new character and changes to the new
state indicated by the transition. If the reading operation
comes up with any character other than those indicated
on the transitions, an error condition is indicated. Thus
the character string "BB" would cause an error condition.
The first B would take us to node 3, but node 3 has no
transition for the second B.

To make this "machine" function as a processor, various
operations must be carried out each time the machine

1 AED-O Programming Manual Preliminary Release #2, D. T. Ross,
Oct.-Dec., 1964. "The term plex was coined early in the COlll­

puter-Aided Design Project as a derivative from the word plexus,
which has the dictionary meaning 'an interwoven combination of
parts in a structure; a network.' Early usage of the term stressed
primarily the data structure aspect of the concept, although
reference always was made to algorithms which would interpret or
give meaning to the data structure." (See [IOJ.)

chang;c~ state, i.e. on caeh transition. These operal ions
consist of the atomic actions of lexical processing. The
"actions" associated "ith the transitions of uur t]m:c­
state machine are shown in Figure 2.

FIG. 1

Here the "action" of "report 8(3)" means report all
the characters currently in the character buffer as an 8(3)
and clear the buffer.

This diagram or graph of the finite-state machine (Figure
2) represents the complete functioning processor. The
processor would break up a character string in the manner
indicated by the input expressions, reporting items as
they were recognized.

It can be seen that the order of execution of the various

REPORT S(2)

ADD" B" TO BUFFER

ADD" A" TO BUFFER

FIG. 2

"actions" is important. On the "C" transition out of node
2 we add the character to the buffer before reporting the
item, giving us an item (3) "AC" and an empty buffer.
On the "B" transition from the same node we report the
item before adding the character to the buffer, giving us
an item (2) "A" and a "B" in the buffer. Each atomic

Volume II / Number 12 / December, 1968 ConllllUllications of the ACM 809

-118-

act ion of)l'xieal proccs,'iing is in the form of a subroutine,
:llld the appropriat() sequence of calls made OIL each transi­
t iOIl. Thc "rl'ad allothcr charadeI''' actioll is the last
a<'lion on each trallsitioll. Some other "actiolls" are:

"!:{'fj!)l"l :.tll error ('ullditioll"

"Call a lls{,l'-dl'sigJlaleu :-;UIJl'Olll irlP"

"'hell t he USCI' has elllployed tIll' (,Olllltiug eapa­
lJility in his regubr exprcssiom (as iu SL\I(l)
LEtj(LET U DIG)*,j $,) the actions required are:

JiI!I'ar}' (,f ~talldard pyo('('durl'S lIs('d to IJuilcl an iII forma­
tion table. The illformation table guide- the operatioll of
the lexical processor.

In the second phase of the RWORII system, the .-\.ED-O
procedure is compiled and loaded along \\ith the package
of table-building procedures. The output of this phase is a
macroinstruction version of the lexical processor table.
If ,;everal lexical processing schemes are to be combined,
eaell of the compiled AED-O procedures is loaded at the

"Irl<'l'cIll{~llt the COlillter"

'~I:es('\ 1he eOlllllcr"

"'j'psl the {'Olillter"

For some languages it cannot IJe determilled whether a
character belongs to the eurrent item or begins a new item
until several more characters have been read. The proc­
essor docs not, ho\\ever, back up or reread. Complex
languages (those requiring "look ahead") use the action
":\lark a possible end of an item" and the reporting of
items no longer consists of emptying the character buffer,
but rather involves reporting thc characters np to the
appropriate item-eliding mark.

Alt hough I~ WOIW handles involved Iallguages \yith ease,
the diagmms representing their Ii nite-,'itate machines soon
become extremely intel'\\'Oven and difficult to folio\\".
Figllt'e :3 shmys the diagram of t he finite-state machine
for the relatively simple I:mguage described in Table 2
as an example of I{W()]lJ) inpnt.

To COILSelYC space the actiolL'i are abbreviated as follo\\"s:

START

FIG, 3

RWORO PART I

g 1',,1 I Ill' ('!lal':II'I('I' ill IIII' "!lnl'a('I('I' 1"i1T('1'

B]:"1'01'1 all 1111' ('!I:lI':!,,1 ('rs ill 1!I" hll((cl' a~

ill'lll ;>, l'mpl.\" hllrrpl'

USER'S ITEM
DESCRIPTIONS

(REGULAR
EXPRESSIONS)

DETERMINISTIC
MACHINE

MACHINE CODE
MACRO DEFINITIONS

POINTER AND CODE IL- • _

TO ITEM DECONCATONATED - - - -
FROM CHARACTER STRING USER'S

CHARACTER
SfRING

RWORO PART 1Il~- -
(USER'S LEXICAL PROCESSOR l I

TABLE INDEX BASED 1,-----'---------,

~~~~A~~:R~U~~E~RTEVIOUs I '-...----,----------'
SEQUENCE OF EVENTS I CALL ON APPROPRIATE I

LEXICAL PROCEDURE I
I
I
I

RWOR 0 PART II

AED·O LANGUAGE VERSION
OF .YJ>...CHINE

(AN ORDERED SEQUENC E OF
CALLS ON PROCEDURES WHICH
BUILD TABLES TO GUlDE OPER­
ATION OF LEXICAL PROCl:SSOR)

MACHINE CODE
PROCEDURE CALLS

LIBRARY OF STANDARD MACRO VERSION

~~~a~Ar6S G~~6~HO~~~~~ION hr-_-,O",F_T:.:.A:::.BL::;E:..S----I
OF LEX ICAl PROCESSOR

FIG. 4

Tcel t!lc "01111(('1'

Construction of the RWORD System

The g;eneral constmction of the RWORIl System IS

shown in Figure 4.
The portion of the system which automatically gen­

erates lexical processors is divided into two parts. III the
first part t he regular expressions defining the lexical
types \"hich make up a lIser language are arcepted as
input. This first phase genrrat('s an AED-O procedure
\\hirh is in the form of an on!erC'd ~eqll('lIr(' of calls on a

Kote that the characters of ignorable items are not put
in the character buffer, and the item is not reported.

Remember that the action "read another character"
occurs as the last action on every transition.

J~\\Tl,(,lll L ('a]1 pro,'('dlll''' ";';\\"ITCII1"

~ 1:",,'IIII""OII'I1C"

I :\~:\+1 I 1'[('l'clI"'1I1 lhc ","II1CI'

810 COlllnlunil'ul i()l1~ uf lite AC" Volume 11 / NUlllb..r 12 / n......mber, 1968

-119-

actually rppresent OIJy 011(', !:Jrg(, "IIl:l('hilj(~," Thi" "lIla­

chine" cannot serye, hO\H~\'E'I', as the Im"is (Jf a !Jl'occ",-;or
since there are states whieh transfer to more than one
other state on the same eharacter or class. Since it cannot
be determined which state the "machine" should trarL..;ff~r

to on a given character, the "machine" is called a 1I01l­

delcl'Illillislir: l/Iachille. C\ote, for example, that state 2
transfers to ooth the output state and state 2 on a "LET",)

The technique \\'e employed to develop the deleoninislic
machine, which will be the basis of om output processor,
is briefly as follows.

Whenever a state transfers to more than one other
state on a given character, \\'e repl'e~cnt this indecision
by creating a single, compound state having the eombined
properties of the states transferred to, Thm, since the
input state transfers to both state -l and state Ii on a clot,
we create the compound state "-l, 6". 1'hi~ compound
state combines the propcrties of states -l and 6 (i.e. it
transfers to state ;j or 01.:1'1'1.:1' on a "DIG" and to state
7 on a dot). When this process is continued systematically
to completion, we have a "machine" in \\hich carh state
transfers to a unique state 011 each character. Thi:; i;: the
deterministic, finite-state machine, \\'hich is our ohjective.

The technique for creating compound states does not
always l'esolye indeterminacies. For instance, if \\'e lu\\'e
a state \\hich transfers to the compGund state :3, -l and
also to state :3, \\"e are in trouble, since the combining
process simply yields the compound state 3, -l again, and
\\"e have not resolved the indeterminacy. We have only
made an arbitrary decision. ~uch situations arise from

start of phase JIwith the taole-building; procedmes. In the
second part a macroversion of the comoined lexical proc­
essing activities is then generateu.

The macroversion of the table is assembled \I'ith a
macroassembler (the FAP macroassembler for the IBl\!
709-l) to form a machine code version of the information
taole. The information table is loaded together \\'ith a
package of lexicllJ processing pl'Oced\lI'es to form the lexi­
cal processor.

The third phase of the system is the operation of the
user's lexical processor. A call is made on the procedure
l\X.IT:\ [from \\'ithin a user program. KX.ITNI is one
of the lexical processing procedures. NX.ITl\I reads a
character from a preestablished file \\'hich contains the
user's character string and, baseu upon the character
read, looks in the appropriate spot in the information
table. The information proviued in the table includes a
pointer to the appropriate lexical processing procedures
and the arguments the procedure requires to carry out
its function.

FornI of the Processors

H,wolw-generated lexical processors have tim logical
parts:

1. The run-time package containing the subroutines
representing the atomic lexical "actions" and the liser­
\\-litten subroutines.

2. A ph~x structme which forms the finite-state machine
\\ith the appl'Opriate ('alls on the action routines.

Each state of the finite-state machine is in t he form of a
table \\'ith an entry for each character. The entries consist
of transfers to other states along \\'ith calls on the ap­
propriate action subroutines.

The actual output of RWORD (the finite-state machine)
is a sequence of macro calls \\hich, \\'hen assembled \\'ith
the proper macro definitions, yields the desired plex struc­
ture. This form was chosen to provide a degree of machine
independence to the RWORD output.

Constructing the Processors: Phase I

One of the advantages of employing the principles of
finite-state machines is that a straightforward technique
exists for the construction of these machines from the
regular expressions [7-9]. The follO\ying is an outline of
the somewhat simplified technique we employed.

Tlie first step in the process consists of constructing a
simpler form of finite-state machine for each of the ex­
pressions. For example, the expressions from our first
example yield the machines as shown in Figure 5.

It can be seen that these diagrams correspond exactly
to the item descriptions in that one can move from the
input state to the output state of each diagram with, and
only with, character strings that satisfy its item descrip­
tion. Because of this exact correspondence, the process of
construction is reasonably straightforward.

Although \\e have spoken of these diagrams as repre­
senting separat(' "m:,chines" for each expression, each
bep;ins at "I1\Tl;T" and ('lids :\1 "OUTPUT"; so tlH'~'

EXPRESSION

SYMII};LET / (LET U DIG) *5$.

INTEGER(2);DIG / DIG * $,

FRACTION(3); . / DIG / DIG * $.

IGNORE; SPACE $,

REMARK(4, SWITCHl); ,/ ./. $.

PUNCT(51; PUN $,

DIAGRAM OF RESULTING
NON- DETERMINISTIC MACHINE

FIG. 5

fill

-120-

ambiguities in the input bnguag;e. In general it can be
shown that whenever two llonidentical transitions being
combined have any simple states in common, the input
language is ambiguous. As indicated previously, RWORD
handles these ambiguities in different ways depending on
their nature and context.

RWORD builds the nondeterministic machine as a plex
in the computer (see Figure .5), but the deterministic
machine with its associated actions is generated as an
AED-O program. This program consists entirely of calls
with appropriate arguments on various subroutines, each
call corresponding to a single transition of the processor.
These routine calls and arguments are such that the pro­
gram could be made to perform the lexical processing by
incorporating the appropriate atomic actions in the sub­
routines. Although this processor could perform the
specified task, it would be quite inefficient both in speed
and in storage requirements. Clearly, some optimizing
is needed.

Constructing the Processors: Phase II

In actual practice, thc AED-O program is an inter­
mediate output of RWORIl phase I. Phase II of RWORD
has two functions:

1. It alters the form of the processor to provide maxi­
mum processing spccd and minimum storage require­
ments.

2. When more than one Icxical scheme is required in
the processor (for context-dependent languages), it com­
bines the several schcmes (each represented by a phase I
output) into a single processor.

As indicated previously, RWORD'S final output is a
sequence of macro calls. These calls are generated in
phase II by compiling and executing the program (or
programs) of phase 1. Thus the actual function of the
subroutines called in that program is not that of lexical
processing but rather it consists of assembling the ap­
propriate macro calls for the particular transition of the
processor. The macro definitions are all that must be al­
tered when changing hardware configurations.

The final step consists of assembling the phase II
output and combining it with the RWORD run-time pack­
age to form the final lexical processor.

Future Developments and Applications

The AED RWORD system has been operational since
late 1966, and many of its features resulted from sug­
gestions made by early users. This process of responding
to user needs has continued to increase the usefulness of
the system.

In our view, a major objection to the original RWORD
system was its limited functional design as a character
processor. In fact, the very use of the term "character"
implies an improperly restrictive application of the
system. The only property of characters that is essential
to the operation of RWORD is that they be available to the
processor in an ordered sequence. Thus the techniques of

lexical analysis can be applied to any elements which
have this property. It is more profitable to think of the
generalized input to the RWORD processors as "events"
and to describe these processors as generalized decision­
making mechanisms with an input sequence of "events"
and with the output being the result of decisions based
OIl the ordering of the events.

One application which comes to mind is in the later
stages of a compiler where the input would consist of
types of source language statements and the output
would be blocks of object code appropriate to a particular
sequence of statement types. The technique might also
find application in the area of theory-of-games or as a
portion of a management system.

We feel that techniques of finite-state machines provide
the basis of a very powerful and general tool which should
find application in fields far removed from computing
machinery, and hope that the RWORD system might play
a useful role in this development.

Postscript

The AED RWORD system had its beginning as a class­
room exercise during the orientation period for new mem­
bers of the AED Cooperative Program in the spring of
1966. As a result many other members of the project
played a role in various parts of its design and execution.

In the time since this paper was drafted for joint author­
ship perusal, the original AED RWORD system has under­
gone several important changes by other staff members of
the M.LT. Computer-Aided Design Project. The system
now is character-set independent, more foolproof and
efficient in operation, and the run-time package has been
prepared for the IBM 360 and UNIVAC 1108 computers as
well as the IBM 7094. Many applications of the resulting
improved system have been made, and RWORD has played
a crucial role in the bootstrapping of the various AED
systems to the above computers. RWORD I and II are
being prepared for bootstrapping, and although the use of
RwoRD-generated finite-state machines in AED compiler
code generation has not yet been initiated, such machines
are now being used in the new language independent
Print Algorithm (PRALG) of AED for generating highly
formatted source language layouts for readable program
documentation.

The following people have participated in various ways,
as helpful users, extenders, or question answerers, in the
continuing RWORD development: R. J. Bigelow, C. G.
Feldmann, P. Johansen, P. T. Ladd, G. L. Lane, R. B.
Lapin, J. E. Rodriguez, J. F. Walsh, and B. L. Wolman.

RECEIVED APRIL, 1968

REFERENCES

1. Ross, D. T. The AED approach to generalized computer­
aided design. Proc. ACM 22nd Nat. ConL, 1967, pp. 367-385.

2. --. An algorithmic theory of language. Rep. No. ESL­
Tl\I-156, Electron. Syst. Lab., MIT, Cambridge, Mass.,
Nov. 1962.

812 Communieations of the ACl\1 Volume II I Number 12 I December, 1968

-121-

3 CHEATHAM, T. E., JJl. The TGS-Il translator generator
system. Proc. IFJP Cong., 1965, Vol. 2, pp. 592-593.

4. CONWAY, III. E. Design of a separable transition-diagram
compiler. Comm. ACM 6, 7 (July 1963),396--408.

5. FLOYD, R. W. The syntax of programming language-a
survey. IEEE Trans. (Aug. 1964),34&-353.

6. LEDLEY, R. S., AND WILSON, J. B. Automatic-programming­
language translation through syntactical analysis. Comm.
ACM 5, 3 (Mar. 1962), 145-155.

7. McNAUGHTON, R. Techniques for manipulating regular
expressions. MIT memo, Cambridge, Mass., Nov. 1965.

8. --, A"n Y.UHDA, H. Hegillar expressiorls ano state graph.~

for automata. III .\loore, E. F. (Eo.), SeCjlleutial machiues-­
selected papers, Bell Tel. Labs., ll1e., :\Iurray Hill,
N.J.

9. SHANNON, D. E., AND MCCARTHY, J. Automata Studies.
Princeton U. Press, Priuceton, :\. J., 1956.

10. Ross, D. T. A generalized techuiCjue for symbol manipula­
tion ano llumerical calculatiol1. Comm. AOM 4,3 (:\Iar. 1961),
147-150.

11, FELDMAN, J., AND GRIES, D, Trauslator writing systems.
Comm. AC.'l--I 2,2 (Fen. 1968),77-113.

Volume 11 / Number 12 / December. 1968 Communications of the ACl\I 813

UNCLASSIFIED
Security Classification

- •. . -I
DOCUMENT CONTROL DATA- R&D ,

(Security classification of title, body a/abstrBct and indexing annotation must be entttTed when the overall report is clBssi!i<:~:, .
I. ORIGINATING ACTIVITY (Corporate author) la. REPORT SECURITY CLASSIFICATIO.

Electronic SysteITls Laboratory UNC LASSIF lED
Mas sachusetts Institute of Technology lb. GROUP

C aITlbridge, Mas s achus etts 02139
--

3. REPORT TITLE

COITlputer-Aided Design for NUITlerically Controlled Production

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Technical Report for period 1 May 1967 through 30 January 1970
5. AUTHOR(S) (Last name, first name, initial)

Ward, John E.

6. REPORT DATE 7a. TOTAL NO. OF PAGES

1

7b NO. OF REFS

June 1970 121

5a. CONTRACT OR GRANT NO. F336l5-67-C-153l 9a. ORIGINATOR'S REPORT NUM8ERlSJ

b. PROJECT NO.
F336l5-69-C-134l M.1. T. Report ESL-FR-420

863-7
9b. OTHER REPORT NOIS) (Any other numbers that may bec. 86309 assigned this report)

d.
AFML-TR-70-78

'0. AVAILA81 LI TY / LIMI TATION NOTICES

This docuITlent is subject to special export controls and each transITlittal to
foreign governITlents or foreign nationals ITlay be ITlade only with prior approval
of the Air Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433

II. SUPPLEMENTARY NOTES Il. SPONSORING MILITARY ACTIVITY

Air Force Materials Laboratory
Wright-Patterson Air Force Base,
Ohio 45433

'3. A8STRACT This report sUITlITlarizes the activities of the M.1. T. COITlputer-AidedDesign
(CAD) Project froITl 1 May 1967 through 30 January 1970 in the final iITlpleITlentation
phase of a generalized "sys teITl of software systeITls II for generating specialized
probleITl-oriented ITlan-ITlachine probleITl-solving systeITls. Known as the AED approach
(for AutoITlated Engineering Design) the Project results are applicable not only to
ITlechanical design, but to arbitrary scientific, engineering, ITlanageITlent, and production
systeITl probleITls as well. PrograITl accoITlplishITlents are supported by hardware and
software innovations in cOITlputer graphics. All results have been prograITlITled using
ITlachine-independent techniques in tke Project's AED-O Language, based on Algol-60.

During this concluding 32-ITlonth phase of the 10-year CAD prograITl atM.1. T., the
ITlajor eITlphasis has been on bootstrapping the AED systeITls to third-generation COITl-
puters. A series of field-trial systeITls was ITlade available to industry, culITlinating in
July 1969 in forITlal release of Version 3 of AED for IBM 360-series cOITlputers in both
batch and tiITle sharing, and partial cOITlpletion of a cOITlpatible version for the Univac
1108 cOITlputer. Report topics include: The bootstrapping proces s; user documentation
for the AED systeITl; several application studies to deITlonstrate use of AED techniques
in language design, systeITl building, and cOITlputer graphics; and Project interaction
with industry.

14. KEY WORDS
prograITlITling languages cOITlputer-aided design display systeITls
cOITlpilers AED
software digital cOITlputers cOITlputer graphics

DO FORM
I NOV" 1473 (M.I.T.) UNC LASSIFIED

Security Classification

PROPERTY OF UTe lfBRARY
RETURN TO UTe LIBRARY. DO Nor DESTROY 0"

TRANSMIT TO ANOTHER PERSON OR OFFICE.'" ,

,~''''''~

REPORTS DISTRIBUTED BY THE COMPUTER-AIDED DESIGN PROJECT

REPORT AND
TECHNICAL MEMO

NUMBERS

8436-TM-I

8436-TM-Z

8436_TM_3

8436-TM-4

8436-TM-5

8436_R_I

8436-lR-I

8436-lR-Z

ESL-R-13Z

ESL_IR_138

ESL-TM-156

Lincoln Lab
Technical
Report No. 296

ESL_TM_164

ESL-TM-167

ESL-TM-169

ESL_TM_170

ESL-TM_173

ESL-lR-180

ESL_IR_ZOZ

ESL-TM-Zll

ESL_TM_ZIZ

ESL-TM-ZZO

ESL-lR-ZZI

ESL-TM-ZZ8

ESL-lR-Z41

DDC NOS.

AD Z43 156
PB 155406

AD Z48 436
PB 155407

AD Z48 437
PB 155 408

AD Z5Z 060
PB 155409

AD Z5Z 061
PB 155410

AD Z53 676
PB 155 553

AD Z5Z 06Z
PB 155 405

AD Z69 573

AD Z74 985

AD Z8Z 679

AD Z96 998

AD 464 549

AD 403 685

AD 406 608

AD 404 83Z

AD 405 88Z

AD 406 855

AD 418 183

AD HZ 880

AD 453 881

AD 453 880

AD 472 147

AD 604 678

AD 461 41Z

AD 467 764

TITLE

Papers on the APT Language

Method for Computer Visualization

A Digital Computer Representation of
the Linear, Constant-Parameter
Electric Network

Computer-Aided Design: A Statement
of Objectives

Computer-Aided Design Related to the
Engineering Design Process

Automatic Feedrate Setting in Numerically
Controlled C antour Milling

Investigations in Computer-Aided Design
InteriIn Report No.1

Investigations in COInputer-Aided Design
InteriIn Report No.2

De5ign of a Remote Display Console

Investigations in Computer-Aided Design
for Numerically Controlled Production-_
Interim Technical Progress Report No.
3 and 4 ASD_TR_7_8Z0 IIR 3 and 4)

An Algorithmic Theory of Language

Sketchpad: A Man-Machine Graphical
Communication System

Investigations in Computer-Aided DeBi~n

for Numerically Controlled Production-­
Interim Technical Progress Report No 5
ASD-TR_7_8Z0 IIR 5)

Specialized Computer Equipment for
Generation and Display of Three
Dimensional Curvilinear Figures

An Outline of the Requirements for a
Computer -Aided Design System

Theoretical Foundations for the Computer­
Aided Design System

Sketchpad III, Three Dimensional Graphical
Communication with a Digital Computer

Investigati?ns in Computer-Aided Design
for Numerically Controlled Production-­
Interim Techttical Progress Report No.6
ASD-TR-7-8Z0 (IR 6)

Investigations in Computer-Aided Design
for Numerically Controlled Production-­
Interim Technical Progress Report No.7
ASD-TR-7-8Z0 (IP. 7)

AED Jr.: An Experimmtal Language
Processor

Implications of Computer-Aided Design
for Numerically Controlled Production

Some Experiments with an Algorithmic
Graphical Language

Investigations in Computer-Aided Design
for Numerically Controlled Production -­
Interim Engineering Progress Report
IR 8-Z36-1

An Approach to Computer-Aided
Preliminary Ship Design

Investigations in Computer-Aided Design
for Numerically Controlled Production-­
Interim Engineering Progress Report
IR 8-Z36-11

AUTHORIS)

Ross, D.T.
Feldmann, C. G.

Smith, A.F.

Meyer, C.S,

Ross, D. T.

Coons, S. A.
Mann, R.S.

Welch, J.D.

Project Staff

Ross, D. T.
Coons, S. A.

Randa, G.C.

Ross D. T.
Coons, S. A.

Ross, D. T.

Suthe r land, I. E.

Ross, D. T.
Coons, S. A.

Stotz, R.H.

Coons, S. A.

Ross D.T.
Rodriguez, J .E.

Johnson, T.E.

Ross, D.T.
Coons. S,A.

Ross. D.T,
Coons, S. A.

Ross. D. T.

Ross, D. T.

Lang, C. A.
Polansky. R. B.
Ross, D. T.

Ross, D. T.
Coons, S. A.
Ward, J. E.

Hamilton, M. L.
Weiss, A. D.

Ross, D. T.
Coons, S. A.
Ward, J. E.

DATE

6/60

9/60

8/60

9/60

10/60

IZ/60

1/61

11/61

Z/6Z

5/6Z

11/6Z

1/63

Z/63

3/63

3/63

3/63

5/63

6/64

6/64

9/64

9/64

8/65

IZ/65

1/65

6/65

-.

REPORTS DISTRIBUTED BY THE COMPUTER-AIDED DESIGN PROJECT

REPORT AND
TECHNICAL MEMO

NUMBERS DDC NOS.

ESL-IR-262 AD 482837

ESL-IR-278 AD80ZZ13

ESL-R-305 AD 814912

ESL- R- 306 AD 815395

ESL-IR-320 AD 821385

ESL-FR-351 AD 850036

TITLE

Investigations in Computer-Aided Design
for Numerically Controlled Production -­
Interim Engineering Progress Report
IR 8-236-1II

Investigations in Computer-Aided Design
for NUIne rically Cont rolled Production -­
Interim Engineering Progress Report
IR 8-236-IV and V

The AED Approach to Generalized
Computer-Aided Design

Translation Between Artificial
Programming Languages

Investigations in Computer-Aided Design
for NUInerically Controlled Production -­
Interim Engineering Progress Report
IR 8-236- VI

Investigations in Compute r-Aided Design
for NUIllerically Controlled Production -­
Final Technical Report for period
1 December 1959 - 3 May 1967.
(Also Air Force Report AFl\.{L-TR-68-206)

AUTHOR(S) DATE

Ross. D. T. 3/66
Coons, S.A.
Ward, J. E.

Ross, D.T. 8/66
Coons. S.A.
Ward, J. E.

Ross, D. T. 4/67

Lapin, R. B. 4/67

Ross. D.T. 8/67
Ward, J.E.

Ross, D. T. 5/68
Ward, J.E.

ESL-R-356 AD 685202

ESL-TM-394 AD 859084

ESL-R-397 AD 860624

ESL-R-398 AD 697759

ESL- R-405 AD 863500

ESL- R-406 AD 866123

ESL-FR-420

An Integrated Hardware-Software System
for Computer Graphics in Time-Sharing
(Also Project MAC Technical Report
MAC- TR-56)

The SHOWIT System: An Example of the
Use of the AED Approach

Interactive Syntax Definition Facility

A Graph Model for Parallel Computations

Introduction to Software Engineering
with the AED- 0 Language

AED Programmer's Guide

Computer-Aided Design for Numerically
Controlled Production --
Final Technical Report for period
1 May 1967 - 30 January 1970.
(Also Air Force Report AFML_TR_70_78)

Thornhill, D. E.
Stotz, R. H.
Ross, D. T.
Ward, J. E.

Ross, J. R.
Ross, D. T.

Eanes, R.S.

Rodriguez, J. E.

Ross, D. T.

Feldmann. C. G. (Editor)
Ross, D.T.
Rodriguez, J. E.

J.E. Ward

12/68

6/69

9/69

9/69

10/69

1l/69

6/70

PROPERTY OF UTe LIBRARY
RETURN TO UTe LIBRARY. 00 NOT DESTROY Cl~

TRANSMIT TO ANOTHER PERSON OR OFFiCE.

..._-------------......... ,J

